
AD-A262 515

AFIT/GCSIENG/93M-nl

OBJECT-ORIENTED DATABASE

ACCESS FROM ADA
SELECTE

T•EsIS APR 0 5 1993
Reproduced From .I Chou

Best Available Copy Lt Cl, ROCAFE

AFIT/GCS/ENG/93M-01 --. ... _

930-0006837

98 402 OOZ Ilal1w. it \S11I

Approved for public releae: distribution unlimited

AFIT/GCS/ENG/)3M-O1

OBJECT-ORIENTED DATABASE ACCESS FROM ADA

THESIS

Presented to the Faculty of the School of Engineenng

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science Accesion For

NTI$ CRA&I
DTI9 TAB
Una lnounced 0
Justification

L i Chou, B.S. BY
Distribution I

Lt Col, ROCAF Availability Codes

DLt Avail and/or =

March 1993

Approved for public release; distribution unlimited

Table of Contents

Page

List of Figures 6

List of Tables 7

Acknowledgements , 8

Abstract ... 9

1. Introduction 1-1

1.1 Background 1-1

1.2 Problem Statement 1-3

1.3 Research Objectives 1-3

1.4 Approach ... 1-3

1.5 Materials and Equipment 1-4

1.6 Document Summary 1-4

U. Literature Review 2-1

2.1 Overview ... 2-1

2.2 Overview af ObjectStore 2-1

2.3 Programmiag Language and DBMS 2-3

2.3.1 Data persistence 2-3

2.3.2 Programming Language Interface to DBMSs 2-7

2.3.3 Approaches to the interface 2-7

2.4 Ada and C/C++ Communication 2-9

2.4.1 Information Hiding 2-9

2.4.2 Overloading 2-10

2.4.3 Polymorphism 2-10

2.5 Interface Programming from Verdix Ada 2-11

2

Page

2.5.1 Create Parallel Data Types 2-11

2.5.2 Declare External Subprograms 2-12

2.5.3 Accessing C++ and ObjectStore's Extended Functions . . 2-13

2.5.4 Ada binding to X window 2-14

2.6 Summary .. 2-16

III. Design and Implementation 3-1

3.1 Overview 3-1

3.2 The Prototype of Ada/ObjectStore 3-1

3.2.1 Ada/ObjectStore interface 3-1

3.2.2 Compare Ada/ObjectStore and ObjectStore 3-3

3.3 Implementation Issues 3-5

3.3.1 C Library Interface 3-6

3.3.2 Types in the Interface 3-7

3.4 Implementation Ada/ObjectStore FacUities 3-11

3.5 Testing of Ada/ObjectStore 3-14

3.5.1 Testing Ada/ObjectStore functionality 3-14

3.5.2 Performance Testing 3-14

3.6 Summary .. 3-16

IV. Results Analysis 4-

4.1 Overview ... 4-1

4.2 Periormance Comparison of Ada/ObjectStore and ObjectStore 4-1

4.3 Problems Encountered 4-6

4.3.1 Debugger 4-6

4.3.2 Understanding ObjectStore 4-7

4.3.3 Interface Limitations 4-7

4.4 Summary ... 4-8

3

Page

V. Conclusions and Recommendations 5-1

5.1 Overview 5-1

5.2 Summary of Research 5-I

5.3 Conclusions 5-1

5.3.1 Data Persistence 5-2

5.3.2 Reliability, Maintenance, and Efficiency 5-2

5.3.3 Data Abstraction 5-2

5.4 Recommendations for Future Research 5-3

5.4.1 Transparency5-3

5.4.2 Exception Handling 5-3

5.4.3 Version Management 5-3

5.4.4 Variant Records 5-4

5.5 Summary 5-4

Appendix A. Raw Performance Test Results A-i

Appendix B. Test Program. B-i

B.1 Test Program: adaobj.mk (for adaobj.a) B-2

B.2 Test Program: adaobj.a B-3

B.3 Test Program: adacol.mk (for adacol.a) B-9

B.4 Test Program: adacol.a B-10

B.5 Test Program: adaobj.mk (for adaobj.c) B-17

B.6 Test Program: adaobj.c B-19

B.7 Test Program: adacol.mk (for adacol.c) B-25

B.8 Test Program: adacol.o- 27

B.9 Test Program: purobj.a. B-33

B.10 Test Program: purobj.c B-38

B.11 Test Program: heUo.ost.mk (for helio..ot.a) -44

4

Page

B.12 Test Program: helloost.a -45

B.13 Test Program: helo.ost.mk (for hello.ost.c) B-47

B.14 Test Program: hello.ost.c -48

Appendix C. Interface Programs C-1

C.i Interface Program: Makefile C,-2

C.2 Interface Program: os-types.a C-3

C.3 Interface Program: os-typ-b.a C-4

CA Interface Program: ostore.a. C-5

C.5 Interface Program: ostore.b.a C-8

C.6 Interface Program: ostore.g.a C-14

C.7 Interface Program: ostorg-b.a C-15

C.8 Interface Program: os-coll.a C-I7

C.9 Interface Program: os-colLb.a C-20

C.10 Interface Program: os-cur.a. C-34

C.11 Interface Program: os.cur.b.a C-35

C.12 Interface Program: except.a C-39

C.13 Interface Program: except.b.a C-40

Bibliography BIB-1

Vita ... VITA-1

5

List of Figures

Figure Page

2.1. Example for the function name encoding scheme 2-15

2.2. Application Program Configuration Using the SAIC Binding 2-16

3.1. Object access 3-2

3.2. Manual schema generation 3-3

6

_.. . _____-__--____ `---_•.....,I '.A '.2aek•A`.•.; • ` •.. `afW.as-•Ja.•` a •

List of Tables

Table Page

1.1. DBIVIS Support of Engineering Design Tool Characteristics 1-2

2.1. The parallel data types between Verdix Ada and traditional C 2-12

2.2. The function name and parameter encoding scheme 2-13

3.1. Fundamental data types of C/C++, ObjectStore, and Ada 3-4

3.2. Functions of Ada/ObjectStore and their equivalent functions in ObjectStore C++

library 3-6

3.3. Functions of ObjectStore C++ library (mangled name) and the same functions in

C library 3-7

3.4. The data type and alignment size using in Ada and C/C++ 3-1'

4.1. Benchmark performance results for hello-ost.a and hello-ost.c 4-1

4.2. Benchmark performance results for hello.ost.a and hello-ost.c (C++ mangling in-

terface) 4-2

4.3. Benchmark performance. iults for hello.ost.a accessing C++ and C library inter-

face ... 4-2

4.4. Benchmark performance results for adaobj.a and adaobj.c 4-3

4.5. Benchmark performance results for adacol.a and adacol.c 4-3

4.6. Benchmar'k performance results for purobj.a and purobj.c 4-4

4.7. Benchmark performance results for adaobj.a and purobj.a 4-4

4.8. Benchmark performance results for adaobj.c and purobj.c 4-5

4.9. Comparison of flue size written in Ada and C (static binding) 4-6

7

Acknowledgements

Many persons helped we go through studying here. It is hard to name all of them, but I must

mention Maj. Mark A. Roth. I owe him much for his advise and patience in helping Ytie through
this difficult time. If I am a dragon, I could be swimming in shallow water; language barrier

constrains my entire space. Without Maj. Roth's endless advise and patient communication-a

real life example of interfacing in languages, I would probably pack my luggage and return to my

domicile before I could finish my thesis.

It is exciting to count the days preparing to go back home. For the 21 months I stay, I need

to thank all my friends here; I need to thank my wife Susan (Fen-Ming) and my children Amy

(Chia-Hui), Jenny (Chia-June), and Charlie (Chma-Chun). Without their support, I could not have

completed this work.

Li Chou

8

S~~........... "...... _-•...... - "" ""

.,FIT/GCS/ENG/93M-01

Abstract

Ada embodies many modern software engineering principles, namely, modifiability, efficiency,

reliability, and understandability. Its powerful data abstraction allows programmers to easily model

objects in the real world. Hcwever, Ada does not provide data management facilities aa a database

management system (DBMS) does. A DBMS provides long term storage. It provides a convenient

and efficient environment to manipulate data. Currently, with Ada, access to a DBMS is typically

done through the use 3f a language extension and a preprocessor to convert the exensions to

library calls appropriate for the DBMS. These systems currently support relational DBMS's and

some variant of the SQL data manipulation language. However, the data structures in traditional

DBMS and in Ada are very different and cause limitations that affect Ada's ability to access

traditional DBMS for more complex applications, such as computer-aided engineering design.

Now, object-oricnted design (OOD) is a new way of thinking about problems using mod-

els organized around real-world concepts. Currently, the OOD methodology has been imple-

mented in object-oriented programming languages (OOPL) and object-oriented database systems

(OODBMS). They provide the same methodology to handle objects. An OODBMS includes most

benefits of a relational DBMS and, in addition, provides the capability to manipulate complex,

heterogeneous data. Obj,ýctStore is an OODBMS. An interface from Ada to ObjectStore could

fulfill the requirements for complex applications.

To approach this research, first, the parallel data types in C and in Ada were implemented.

Then the interface functions were implemented according to the functions described in the Object-

Store Reference Manual. For reasons of simplicity, the interface is done via the ObjectStore C li-

brary. Performance testing is accomplished by comparing the differences between Ada/ObjectStore

and C/ObjectStore.

Ada/ObjectStore performed better in CPU time than C/ObjectStore. However, there is not

much difference between Ada/ObjectStore and C/ObjectStore. The main factors that affect the re-

sult of performance still depend on the two languages own abilities. IL is clear that Ada/ObjectStore

provides the capability of data persistence to Ada. This result favorably affects program length,

program development time, program maintainability, and application reliability.

9

OBJECT-ORIENTED DATABASE ACCESS FROM ADA

L Introduction

1.1 Bakgronund

Historically, persistence of data was accomplished through file systems. File systems provide

data storage required by the application programmer to manage data, but wilh file systems it is

difficult to support data censistency, concurrency, and sharing worJ, between applications.

Unlike file systems, database management systems (DBMS) provide an environment which is

both convenient and efficient for computer appiications to manipulate data. Database management

systems not only support data storage, but also maintain data protection. DBMS protect data

against inconsistency through concurrency control and recovery methods in spite of multiple users

and system failures. In addition, DBMS provide services for data sharing, security, and query.

However, the relational database management system (RPBMS), currently the DBMS of the

choice, has many shortcomings. In particular, it has deficiencies for complex design and engineer-

ing applications. The object-oriented DBMS (OODBMS) is a new generation of DBMS which

incorporates the object-oriented programming paradigm into a databas" system. It retains the ca-

pabilities of traditional DBMSs; plus, it supports complex data types, multiple versions, and long

transactions. Table 1.1 is a good summary comparing RDBMS and OODBMS suppcrt of several

characteristics of engineering design tools. From this table it is evident that a good OODBMS can

potentially provide the database support necessary for a complex application (11).

Ada is the standard US DoD programming language. Access to t, DBMS from Ada is typically

done through language extension and a preprocessor to convert th extensions to library calls

appropriate for the DBMS. These systems currently st'pport RDBM.s and some variant of the

SQL data manipulation language. Current OODBMSs are written primarily for the C or C++

language. Ada can interface with C via the Ada interface facility pragm INTERFACE. The pragma

INTERFACE specifies the other language and informs the compiler that an object module will be

supplied for the corresponding subprogram (1). AFIT has an OODBMS, (bjectStore, an OODBMS

from Object Design, Inc., and several Ada compilers. This thesis demons rates that Ada can access

an OODBMS that provides extended capabilities for Ada that has object management facilities.

1-1 I
I

Design Tool Traditional Object-Oriented
Chrrcteristic Example DBMS, D3MS

rprlex Sttte References to A key is required for each Fuudamental to the
subcomponents sab-component. Joins are object .3riented paradigm.
within circu-t. required to merge into a

single object.
Inheritance New adder : iherins Complete specification of ±?undsmentrl to the

ettributes of a the schema Lnust be object-oziented paradigm.
typical adde!- and defined a prioi.
modifies them to fit
a particular circuit.

Complex Data Gtaphicrcl represen- Only supports basic data Supports graphical said
Types tation of a circuit. types such as integer and textual date and allowt

character, user to define data types.
Multiple Views Top level view of Must be defini.d in the Can be sp,!cified as a

design or more applicition. Limited by method for the object.
detailed look at a record oriented retrieval. Data is more easily
sub-component. retrieved using

object-oriented storage
techniques.

Murtipl;e Current and May support multip!u Generally built in as a
Versions histok:cal versions. vwrsions of individual tree structure with root

records, node representing a
version. Tree includes all
objects which make up the
venion.

Phased bTo down design. Not supported. Entire Refined sanhewa can
Development schema must be defined a inherit characteristics of a

priori, higher level and modify
for next phase.

Lare Data Thoutands of TLimited only by physical Clustering by object
Volume sub-components in a storage; however, reduces the number of

circuit, record-oriented storage disk accesses. Complex
may limit the size of data types remove object
record, causing multiple size restrictions.
record retrievals for a
single object.

Long Designer takes two Built around short More appropriate
Transaction weeka to rmodify a business transactions. concurrency control and
Duration specific circuit Inefficiency and failure failure recovery methoda

design. occur with long used to support long
transactions, transactions.

P t Thousands of A single viw requires Designed to retrieve large
Performance sub-components are multiple joins and many amounts of data at once.

retrieved and dis- individual accesses.
played in seconds.

'Iable 1.1. DBMS Support of Euginecring Design Tool Cbaracteristics
(11)

1-2

1.5 Problem Sta4ement

Currently, Ada can interface with RDBMS, &uch as thc Ada embedded statemento of the

ORACLE RDBMS (Ada/OCI). RDBMS that provides tue ability to model information organ;zed

as records has wkdely been implemented in Management Intormation Systems (MIS) applications.

However, the RDBMS has its limitations for n.ore complex applications, such as computer-aided

engineering design. Object-oriented concepts have been implemented increasingly in the field of

software engineering. OODBMS, one of implementations using an object-oriented model, includes

most of the benefits of RDBMS. In addit;on, it has the ability to manipulate complex, heterogeneous

data. Current OODBMS such as ObjectStore are written in C or C++. These OODBMSs are

tightly bound with C or C4 +. To extend Ada's capability in area of complex, data-intensive

applications, there must be a way that Ada can interface with OODBMS.

1.3 Research Objectives

The primary purpose of this thesis Is to demonstrate that an Ada binding to ObjectStore can

be accomplished, and that the interface functionality is similar to the existing C/C++ binding to

ObjectStore. Furthermore, the performance of the Ada interface should approach the performance

of the C/C++ interface.

Ada is a very powerful programming language and was designed for problem domains needing

a software-inttnsive system. It requires efficiency, reliability, and maintainability. An Ada interface

to ObjectStore should not lose these good abilities. Also this thesis should identify any possible

limitations related to the interface.

1.4 Api chi

This thesis effort resulted in the development of an ObjectStore binding for Ada. ObjectStore

is written for C/C++. The basic approach employed in this effort consisted of the following:

"* Created parallel data types of Ada and ObjectStore. In order to safely convert data that cross

the interface, parallel data type needed to be created first. Ada supports scalar, composite,

access, private and subtypes, and derived types. A type declared in Ada should have a parallel

data type implemented in ObjectStore.

"* Implemented interface functions. A series of predefined pragma INTERFACE and pragpa

INTMI'ACLNAIE were established to link to the ObjectStore function's. Several interface

pachages were implemented according to the classification of the ObjectStore functions.

1-3

* Implemented test programs using implemented interface packagcs. The test program verified

the functionality of the new implemented interface functions. Before a test program was

compiled, a database schema was implemented. Binding to the ObjcctStore library was

ac,-omplished at compile time by the Ada linking facility.

1.5 Mat.-rials and Equipment

Thin research effort utilizes ObjectStore, version 1.2 and development facilities on a Sun

Sparc II workstation. Verdix Ada, version 6.0, is used to compile Ada programs and the Ada to

ObjectStorc interface programs.

1.6 Document Summary

Chapter ' describes properties of ObjectStore and describes ObjectStore's abilities in sup-

port of computer-aided design applications. Fuithermore. this chapter describes data persistence,

and hoa a programming language that can extend its capability of handling persistent data

through a database. This chapter also describes previous research iv. interface programming from

Ada. Cbapter 3 summarizes the prototype of Ada/ObjectStore designed by Object Design, Inc.

(18), and present a desigr. of Ada/ObjectStore via the ObjectStore C library. A comparison of

Ada/ObjectStore and C/ObjectStore performance after Ada has extended the ability of data per-

sistence is described in chapter 4. This chapter also discusses some problems encountered in the

effort of "mplementating the Ada/ObjectStore interface. Chapter 5 includes conclusiona reached

regarding the objectives of this thesis and recommendations for further research.

1-4

/

II. Literature Review

2.1 Overview

In order to begin developing a set of interface programs written in Ada that provide access

to ObjectStore, an OODBMS product written in C/C++, we need to know some concepts and

techniques related with this topic. One key area is to compare intercommunication characteristics

of Ada and C/C++. To achieve this requirement, a review of some features of Ada and C/C++

was conducted. These features are abstract data type, data persistence, and current examples of

Ada bindings, including X windows and ORACLE.

2.2 Overview of ObjectStore

ObjectStore, developed by Object Design, Inc., is an object-oriented database management

system (OODBMS). It provides a tightly integrated language interface with the features of data

management found in traditional DBMS. ObjectStore was designed to provide a unified program-

ming interface for both persistent and transient data.

OODBMS contain capabilities of data management as with traditional DBMS. In addition,

OODBMS more directly integrates with an object-oriented programming environment. Therefore,

the advantage of the OODBMS over the traditional DBMS is that it provides both data persis-

tence and expressibility (19). In a traditional DBMS, transient data are stored in variables in the

programming language, and persistent data are stored in the database. Programmers explicitly

convert data between transient and persistent states. However, object instances in an OODBMS

application are either persistent or tra~ient. The persistent data in ObjectStore is provided by

overloading the C/C++ 'a memory allocation operator. Transient data is provided with the ordi-

nary operators of C/C++. ObjectStore provides not only persistent and transient data, but, for -

more efficient data handling, it provides the developer with a single view of memory by dividing the

memory space into program memory and database memory. Persistent data stored in ObjectStore

are handled by C/C++ programs exactly the same way as transient (non-persistent) data are (17).

ObjectStore is an object oriented database management system. It provides the data query

and management capabilities of a traditional database. In addition to the capabilities of a tra-

ditional database, it provides the flexibility and power of the C++ object-oriented programming

language and the versioning mechanism to support creation and manipulation of alternative ob-

ject versions. The versioning mechanism enhances parallel work on shared data (17). To group

objects together, ObjectStore provides collections which provide a convenient means of storing and

manipulating objects. This feature is not supported by C++ and most DBMSs (14). Collections

2-1

,D.1,;, . .7 7`,-7777

are abstract structures which resemble arrays in traditional programming languages or tablr in

relational DBMS. ObjectStore collections provide a variety of behaviors, including ordered or un-

ordered collections (lists), and collections that either do or don't allow duplicates (bags or sets).

These are commonly used to model one-to-many and many-to-many relationships. They also pro-

vide a domain for iteration and for the execution of queries (17).

ObjectStore's unique Virtual Memory Mapping Architecture (VMMA) achieves its perfor-

mance by using memory mapping, caching, and clustering techniques to optimize data access. The

key features of ObjectStore's virtual memory mapping architecture allows persistent data to be

handled exactly the same way as transient data, minimizing overhead of retrieving and manipu-

lating large amounts of data, and managing versioned data in a way that does not slow access to

non-versioned data. In addition, ObjectStore performs effective associative access and optimizing

of queries. These techniques formulate efficient retrieval strategies and minimize the number of

objects examined in response to a query (17).

ObjectStore applications require three auxiliary processes for their execution: the ObjectStore

Server, the Directory Manager, and the Cache Manager. These processes are started automatically

when an ObjectStore application starts. Most users never have to worry about starting •r stopping

them. The Server handles all storage and retrieval of persistent data. The Directory Manager

manages a hierarchy of ObjectStore directories by storing its information in a directory database.

The Cache Manager manages an application's data mapped or waiting to be mapped into virtual

memory (17).

There are four approaches to using ObjectStore: (17)

1. the C library interface,

2. the C++ library interface without class templates,

3. the C++ library interface with class templates, and

4. the C++ library interface with class templates and the ObjectStore DML.

The C++ library interfaces involved in application systems depend on the compiler used. For the

C++ library interface without class templates, the compiler used is based on AT&T's cfront. For

the C++ library interface with class templates, the C++ compiler used should include the ANSI

Draft Standard. The Object Design C++ compiler supports class templates and ObjectStore's

DML, which provides clarity and convenience to access database. Furthcrmore, the Object Design

C++ compiler allows applications that mix these approaches freely; a program could perform some

queries using the DML and some queries using the C++ library interface.

2-2

.. ___ __ __ _ -_ •. _____.... ____.... ._,,_-_7_-____ 7 •711

2.S Programming Language and DBMS

For a long time, programming leanguage designers have tried to find out an effective way of

handling long term storage. Data, if required to survive a program activation, needs to be stored in

a file or a DBMS. However, the data structures in traditional DBMS and in programming languages

are very different. The traditional DBMS only supports limited data types, but most programming

languages support complete data type systems. Now, object-oriented design (OOD) is a new way

of thinking about problems using models that are organized around real-world concepts. Currently,

the OOD methodology has been implemented in programming languages (OOPL) and database

systems (OODBMS). Because they provide the same methodology to handle objects, they provide

an advantage for data persistence. The following describes the characteristics of data persistence.

defines persistent programming languages, and why we need programming languages that interface

to a DBMS.

2.1.1 Data persistence. Persistence is the ability of the programmers to hwve their data

survive the execution of a process in order to eventually reuse it in another process. Persistence

should be orthogonal to type. The user should not have to explicitly copy data to make it persistent.

Booch (7) defines persistence as follows:

Persistence is the property of an object through which its existence transients time
(i.e. the object continues to exist after its creator ceases to exist) and/or space (i.e. the
object's location move& orom the address space in which it was created).

Persistent data should have the following properties (2):

1. Persistence independence: the persistence of a data object is independent of how the program

manipulates that data object. Conversely, a fragment of program is expressed independently

of the persistence of data it manipulated. For example, it should be possible to call a procedure

with either persistent or transient objects as parameters.

2. Persistence data type orthogonality: persistence should be a property of arbitrary values and

not limited to certain types. All values should have the same rights to persistence.

3. Persistence transparency: persistence is transparent when the programmer is not aware of

how the data maps between memory and storage.

Harper, in "Modules and Persistence in Standard ML" (10:26-27), pointed out that the most

general notion of persistence, called object persistence, consists of viewing all objects as existing in

persistent storage, with transient storage serving only as a cache for quick access. Each object is

2-3

7

identified by a persistent identifier, or PID, which is the address of that object in persistent storage.

The heap is garbage collected as usual so that only accessible objects are preserved. The garbage

collector is for efficiency, which depends on what algorithm is used. In order to ensure that all

accesses to persistent data are type safe, each object must have its type associated with it. Some

sort of run-time type checking must be involved. A persistent environment must associate the type

of a structure with the object in persistent storage.

Cardelli (8:37-39) classified persistence strategies and sketched three different persistence

models. These correspond to three different semantics for intern-extern. Extern is defined as

the operation that copy objects from transient to persistent memory, and Intern is a symmetrical

operation for those objects. These strategies are the fetch-store, load-dump, and lock-commit

model. Cockshott (3:236) gave a similar but more detailed view of addressing mechanisms for

persisteLt objects. The following is a summary of some of the categories:

9 The Fetch-Store Model

This model is backup storage for transient objects. The association between internal and

external objects is mediated by handles. Extern makes a copy of a transient object in per-

sistent storage, associating it with a handle. Many calls to extern on the same object and

different handles will make many independent copies. Calls of extern on two objects which

share a substructure will duplicate the substructure. Intern has the same functions but op-

posite direction, copying objects from persistent storage to transient storage. Sharing is only

preserved within persistent objects.

* Core Dumping, or session persistent

A simple way of providing pereistence is to make PIDs machine addresses and dump the whole

core at the end of a session and reload it at the start of the next session. This is a simple

technique and this gives us very efficient use of di&k storage, as data is held in contiguous

storage. IGarbage collection and space recovery is simple too. However, the shortcoming is

that it will not be able to hold a collection of data that is larger than its RAM since they

assume th~at the whole collection of data is loaded into RAM at the start of each session.

Another c~nsiderable cost is the time required to startup and close down. The loser must wait

for the whce image to swap in or out at the start or finish of the session.

* Use of Virtlal Memory, paged or segmented.

This technique is to mako the PIDs virtual addresses in a paged or segmented store. It is not

necessary to dump or reload the entire image. Instead, it can be done incrementally, a page

or segment at a tbme as needed. Implementations of virtual memory are transparent to users.

2-4

4.-.

./

It allows multiple users running programs concurrently. Each program is given the illusion

that it is using physical memory alone. However, it will work with degraded performance.

* Multiple Address Space Models

In this implementation, the PID is charged according to which address space the object

contained is currently residing in. If it is resident in RAM, the PIDs are converted to RAM

addresses. If it is on disk, the PIDs are represented as disk addresses. A search is made of

a memory resident table called the PIDLAM. This table holds a two way mapping between

PIDs and local addresses. These are disk addresses and RAM addresses respectively. Every

object that was brought in from disk in this session must have an entry in the PIDLAM. The

drawback of this technique, however, is that a complex body of software is needed to manage

the PIDLAM. Any algorithm used is not just for simplicity. The current PS-Algol uses this

technique.

* Associative PID Addressing & Paged Virtual Memory

This puts another level of addressing above virtuai memory. The PIDs here are names of

objects rather than addresses. A combination of associative memory hardware and firmware

maps these names onto paged virtual memory.

£.S.1.1 Persistent Programming Languages. A persistent programming language is a

programming language that providea the ability of data persistence. There are several approaches

to providing persistent data services: files, special hardware devices, and databases (19). Most

programming languages do not provide thi ,bility. Atkinson pointed out that in any program

written with a non-persistent progri-mming language, there is usually a considerable amount of code,

typically 30% of the total, concerned with transferring data to and from files or a DBMS (2). Much

space and time is taken up by code to perform translations between the program's data and the form

used for the long term storage medium. Therefore, the main advantage of persistent programming

languages is quite clear. That is, it favorably affects program length, program development time

and program maintainability. To discuss persistent programming languages, we need to look at

what languages should provide and what abilities are required for pers.stence.

o Data type completeness:

The basic requirements for data persistence are persistence independence and data type or-

thogonality. However, a complete type system should have a methnd that stores persistent

types, such as a schema generator that generates a schema in a DBMS. More specifically,

data persistence in programming languages is achieved through data type persistence. The

persistent data type works with a data type checking algorithm (data type checking will be

2-5

.1 -

mentioned later) to protect data across the boundary between storagee and application pro-

grams. Both languages, Ada and C, provide base data types and abstract data types, except

inheritance. Both provide data type completeness, and, in some cases, Ada is better than

C in data abstraction. Unfortunately, as with most programming languages, they do not

Drovide any way to store data types.

Memory allocation and deallocation:

Ada and C provide three kinds of memory allocation: static (global), automatic (stack), and

dynamic (heap). Static and automatic memory normally is allocated at block entry. Dynamic

memory is explicitly allocated memory. In Ada memory deallocation works automatically.

However, in C deallocation is done explicitly. Garbage collection, or memory deallocation, is

a factor of performance for languages.

Type checking:

It is dangerous to allow languages without a strong type checking mechanism to handle

persistent data. Languages must provide type checking mechanism to protect against a system

crash during run time. Because many objects are transferred between the disk and memory

while the system is running, any type mismatch will cause the system to exit abnormally, or

even worse, cause some erroneous data to be stored. Languages should provide a method of

storing and retrieving persistent data as well as a description of its type and a method of

type checking. Type checking is another weak point of C. Ada provides strong type checking

to prevent run time errors. Moreover, Ada's exception facility provides a more elaborate way

to handle errors at run time. C does not have those benefits.

* Persistence through reachability or declaration:

Persistent programming languages provide the ability of data persistence through reachability

or declaration. Programmers need to understand how data persistence is provided by the

language they use.

- Persistence through reachability:

This approach has one or more persistent database roots and makes every object that

is reachable from these persistent. This was the approach used in one of the earliest

persistent programming languages, PS-ALGOL (2)

- Persistent through declaration:

This approach is to declare data structures that are persistent. For example, to declare

a structure PERSON that is persistent, all objects created for PERSON are persistent. ,

Languages may provide a different operation for allocating permstent or transient ob-

2-6

jects, like ObjectStore does (17). Besides the fact that objects can Le declared to be

persistent, clasRsFt can be declared to be persistent, too. C!eic-Ada provides persistence

by declaring classes to be persistent (22). However, the persistence ability in Classic-Ada

has limitations; all objects under the class declared persistent must be persistient.

o Memory management:

Memory is used to temporarily store a program and its data. Programming languages provide

a uniform memory system. That is data is uniformly distributed in the memory regardless of

its properties. All addresses of p3inters are memory addresses. However, for persistent data,

PIDs representing addresses of objects on disk are required. Also new operators are required

to enable theta to derefeence PIDs. Languages, for example PS-Algol (3:243) use multiple

address spaces, separate the memory so it is persistent and transient. All persistent objects

are stored in the side of persistent memory, and all transient objects are stored in the side

of transient memory. Other languages such as LISP and PROLOG (23) are implemeh.'ed "n

a different way: Persistent Memory. A persistent memory system that is based on uniform

memory abstraction eliminates the distinction between the computational (transient) and

long-term storages (persistent). The uniform memory abstraction is that a processor views

memory as a set of variable-sized blocks or objects interconnected by pointers. Ali objects

that are in the transitive closure of the persistent root are persistent, and vice versa for

transient objects.

•.3.2 Programming Language Interface to DBMS. Ada, a procedural programming

language, is based on constructs such as loops, branches, and if/then pairs. These programming

languages provide good performance in computations, but in the case of intensive interrelated data

retrieval and manipulate, they provide data store and query facilities which are fax' behind those of

"a DBMS. A DBMS provides cc nvrrency control, and failure recovery for data that it stores. Also

"a DBMS supports a transaction mechanism to ensure that the persistent value including updates

produced by transactions are executed to completion. However, programming languages alone do

not provide recovery algorithms that acts on persistent values. Persistent programming languages

have gained the advantage of simplicity and ma'ntainab~ity (2). But, to obtain the best advantage,

allowing a program language acceqs to a database is an advantageous approach.

L,3.3 Approaches to the interface. A programming language interface to a DBMS can be

accomplished by two methods-loosely coupled or tightly coupled. The following discusses the two

methods and their trade offs.

2-7

2.3.3.1 Loosely Coupled - ORACLE and Ada. ORACLE is a Relational Database

Management System (RDJIMS) and can be accessed and manipulated by an application program

written in Ada. ORACLE provides a set of host language call, that f•an be included in application

programs. An Ada program that embeds these calls is known as an Ada/OCI program (16).

Ada/OCI provides a direct interface to the ORACLE RDBMS. The SQL of ORACLE is a

hon-procedural language. That is, most statements are executed independently of the preceding or

following statement (16). Ada is a procedural language and it has limitations on data management.

However, under Ada/OCI construction, programrijers can write software that combines the advan-

tage of SQL and Ada. The basic structure consists of several statements. For example, a program

establishes communication with the ORACLE RDBMS by issuing the LOGON call. Communication

takea pirae via the Logon Data Irea that is defined within the user program, and the EXECUTE-

SQL call executes a specified SQL statement.

ORACLE fetches and stores data objects into and out of the user program by directly access-

ing the data via its actual address. Because of this requirement, if the data in Ada accomplish this

accessing, all scalar objects are represented as record types with a single component of the scalar

type. For example, the type used to represent short integer (16-bit) to ORACLE for database

operations is defined as follows (16):

type oracle-shortjnteger is record
int : short-integer;

end record;

ORACLE performs data conversions for data types provided by the t'der program. On retrieval

operations, ORACLE converts from the internal format of the data as stored in th database to an

external format as defined by the user program. On storage operations, ORACLE converts from

external to internal data types. ORACLE may store characters in ASCII strings and numbers in a

variable length -,caled integer format.

The disadvantage of OCI/Ada is they are loosely coupled. Rumbaugh pointed out (19)

that this sceru-aio is unattractive and the fundamental problem is twofold. Tbe prroblem of this

implementation is that they are totally diffe-m.n. languages. The interface is through a set of

language calls which are implemented by ORACLE. Moreover, ORACLE does not provide the

complete capability of data persistence. The programmer must explicitly convert data between

persistent and transient formats. This conversion causes inconvenience for application developers.

2.3.3.2 Tightly Coupled - ObjectStare and C/ ÷++. Section 2.2 shows ObjectStore

ii a tightly integrated language interface for the features of data management. ObjectStore was

2-8

designed to provide a unified programming interface to both pe~rsistent and transient data. Data

that are allocated in persistent meiaory with an overloaded C++ now operator are persistent.

Otherwise, they are transient. Programmers handle the persistent and transient data with no

difference. Because the capability of complete data persistence is achieved, the explicit 1/O and

data conversion are not required. Furthermore, ObjectStore provides some advantageous abilities

for manipulating data. For example, the collection provides the ability to handle aggregate data

structure, and it allows application programs to be developed more simply and readily maintainable.

2.4 Ada and C/C.,'+ Communication

Ada, from several points of view, provides data abstraction. Ada's package can define a set

of values or data structures and %~ set of operations that. manipulate the data structure it defines.

A package consists of two parts: packbge specification and body. The specification contains the

declarations of types, objects, and subprograms and acts as an interface between the package and

client programs. The package body contains the actual code for the subprograms declared in the

specification. Data declared in the specification is accessible from the external world, but data

contained in the body is hidden from the outside. However, a current shortage in Ada's data

abstraction is that it doesn't support inheritance.

Although Ada is not truly an OOPL, Ada does support some of the major concepts o!

the object-oriented philosophy in the area of data abstraction, namely overloading, encapsulation

(packages), information hiding (private types and package bodies). These features make Ada a

quite suitable OOPL. The following discusses those features in Ada and compare those features to

C.

2.4.1 Information Hiding. The information-hiding feature of abstract data typing means

that objects have a 'public" interface. However, the representations and implementations of these

interfaces are "private"'. The abstraction mechanism that enforces the access 6nd update of objects

with u~ser-defined types is encapsulated. Hence, it can only be performed through the interface

operations defined for the particular type. Ada provides information hiding. For example, a data

structure, stack, is defined to "private". The type name of stack will be allowed to export from a

package, but its internal structure is invisible to the user program. Also Ada provides a greater

degree of information biding or encapsulation. Fox example, the stack can be completely concealed

in the package body. Because of encapsulation, only one stack is required. The programs will

be simplified when the encapsulated stack is used. C doex not support information hiding and

encapsulation.

2-9

2.4•.2 Overloading. Overloading allows operations with the same name but different se-

mantics and implementations, to be invoked for objects of different types. This is one of the most

powerful and useful com.cepts of object orientation. ThE common examples are overloading oper-

ators and overloading names. In almost all langinages, the arithmetic operators "+", "-" and "

aze used to add, subtract, or multiply integers or floating-point numbers. These operators work

even though the underlying machine implementations of integer and floating-point arithmetic are

quite different. The compiler generates object code to invoke the appropriate implementation based

on the kind of the operands. Ada and C support overloading operators, but only Ada Prpports

overloading names. Names, in any language, are used to denote entities. Ada is good for large scale

systems in which the name space may contain more than hundreds of names. In order to avoid

problems using names already defined, Ada allows the overloading of certain names. This facility

is specially useful for subprograms and enumeration literals. One exception is that object names

cannot be overloaded. One example of overloading a subprogram's name, CLEAR, is as follows:

procedure CLEAR (THE-VALUES : in out VALUES);
procedure CLEAR (THE-MATRIX : in out MATRIX);

2.4.3 Polymorphim. Polymorphism generally represents the quahity or state of being able

to assame different forms. When applied to programming languages, it indicates that the same

language construct can assume different types or manipulate objects of different types. Fairbrairn

(3:70) pointed out that with polymorphism the function works just as well whether the type is, fot

example, iat or char. The idea is to replace the irrelevant details with a type-variable that can be

filled in later. Overloading is analogous to polymort\ism, such as "+", an overloading operator,

crm apply to different types of objects in which base types are INTEGER or FLOAT. To maximize

the re-usage of software, it is important to be abie to parameterize software components so that the

same blueprint can be used in type-safe fashion for different applications. Ada's generics support

parametric polymorphism. In contrast, C has no parametric facilities. The common practice is to

use the C preprocessor (a macro expander) to duplicate text with suitable replacement in order

to simulate generic instantiation (21). This mechanism is purely lexical: there are no syntax or

semantic checks attached to the macro definition nor to each of its expansions. Another way is using

'void*" as a parameter. Because the object is typed as "void*", a cast is necessary when using

it. The weak type checking of C makes programmers zesponsible for types matching in application

programs, and this will cause the most common type of run-time errors.

2-10

_______________....___________•__ /

2.5 Interface Programming from Verdix Ada

The main issue of binding between Ada and C is to match parameters. Objects that can be

matched in these two languages are based on their type systems. Fortunately, types in Ada and C

can be manipulated to match. C functions act like functions or procedures in Ada depending on

whether or not they return a value. The following are basic concepts to accomplish the interface.

2.5.1 Create Parallel Data 27jpea. The VADS Prograrmmr's Guide points out that the

first step in creating an Ada interface to a subprogram in C is to "create par'.-lel data types" (24).

The parallel type, or data structure does not mean the type's name are identical in Ada and C, but

the composition, length, and alignment of the component of that type are required to be identical.

From the programmer's guide of Verdix Ada, two basic approaches are av&ilable for creating parallel

data types:

1. using parallel data types known by the programmer from reading the vendor's documentation,

and

2. using Ada representation specifications.

Ada representation clauses allow the Ada programmer to define an exact duplicate of the physical

layout of any data type in another language once it is known. For example, the type INTEGER in

Ada corresponds to the type int in C; the type SHORT. INTEGER is equivalent to the the type short

in C. Both Ant and short represent a 16 bit integer. Table 2.1 shows some base types that parallel

between Verc.ix Ada and traditional C. Ada allows type specifications that are largely independent

of the implementation. For example, the type SHORT.-INTEGER in Ada can be defined to equal

the type unsigned short in C. Type, storage, record layout, and alignment can all be controlled.

When the underlying representation of a type has no analogue in Ada's language, the data type

can be defined by the programmer using Ada representation specifications and UNCHECKED.

CONVERSIONs. For example, the type char is used both to represent a character or a byte

Integer value. There is no exact Ada analogue to this behavior, but the generic function UNCHCKED..

CONVERSION offers a method for controlled easing of type conversions: Ada's TINY...INTEGER can be

used for numeric representations and type CHARACTER can represent a character value (24). One

thing that is important when using the parallel data types is that the PRAGMA INTERFACE permits

only 32-bit or 64-bit scalar values to be passed. Consequently, when you pass INTEGER you can

pans it by parallel INTEGER variables in C. But, wb,n you pass SHORT_.INTEGER variables to a C

function, you must pass them by address. System address is a predefined attribute in Ada. The

value of this attribute is defined in the package SYSTEM.

2-11

(Traditional C Verdix Ada

int INTEGER -

long INTEGER
short SHORTINTEGER
char CHARACTER

TINY.INTEGER
float SHORT-FLOAT
double FLOAT

Table 2.1. The parallel data types between Verdix Ada and traditional C

In compound typ,.s, such as ARRAY or RECORD, the same approach can be taken. Both C

and Ada associate the label of compound types with a base address and offsets provide access

to individual components of these types. For the Ada programmer, as long as the compound

types are composed of equivalent simple data types, the offsets will be calculated similarly and the

structure of compound typf.a will bc identical. Verdix recommends that che SYSTEM. ADDRLSS of the

first element of an Ada array be btaL to pass the array to C. For record types, the pointer which

contains the ADDRESS of the first element is the best way to send the record to C. Pointers and

address types are implementation specified. Ada's host conventions usually allows the use of Ada

pointer and address types parallel to their C counterparts. If for some reason, host conventions are

not followed, representation specifications can be used to fit the size and range of the data type

(24).

String types in Ala and C are different. A C string is simply a pointer that points to the first

character. The string is terminated by a null character. In another words, there is no explicit length

for C to vtore. In Ada, however, a string is represented by a pointer to an unconstrained array of

charactc: j and it needs an explicit length provided by its attribute, LENGTH. An Ada subprogram

that calls a C funct.on parsing a string as a parameter should be prepared to make the necessary

conversions.

2.5.2 Declare External Subprnvum. After parallel types have been designed, interface

packages need to be implemented to access progr.; ns written in C. Ada provides an ability of

interface to other languages. A subprogram written in C can be called from an Ada program

provided that all communication is achieved via paiameters and function results (1). This is

accomplished by a predefined PRAGMA ZINERFACE-NAME to establish a link from the Ada procedure

or function name to the corresponding procedure or function written in C The Verdix PRAG•A

ITRDFACE allows Ada programs to call subroutines defined in C with:

prapa INTERFACE-NAME (Ada.subprogram.nme, subprogram.link-name);

2-12

Encoding Scheme Types JEncoded Symbols

Basic Types void v
char c
short 8
int i
long I
float f
double d
long double r

,o, e

Type Modifiers Unsigned U
const C

volatile V
signed S

Standard Modifiers pointer * P
reference & R
array [I(0JAI0
function F
ptr to member S::*MIS

Table 2.2. The function name and parameter encoding scheme

The subroram,-1ink.,nams argument may be formed from a string literal, a constant string

object, or a catenation of these. operands. C, unlike Ada, is case sensitive, so subprogram-.iak..

name in pra"a INTEMCE must be same as the case of the function written in C. A pragma is

allowed at the place of declaration, and must apply after Ada-.ubprogram-name used in its pragma

IUT1RFACE.NAUE has been declared. The Ada compiler handles parameter pushing and target

language compiler naming conventions and checks to make sure the parameters are allowed in the

target language.

£.5.S Accessing C!+÷ and ObjectStore's Eztended Fnctions. C++ is an extension of the

C language, Implemented not only to add object-oriented capabilities but also to redress some of

the weaknesses of the C language. Many features are added such as, inline expansion of subrou-

tines, overloading of functions, %nd function prototypes (19). It was originally implemented as a

preprocessor that translates C++ into standard C. After the functions cf C++ are translated to

C, Ada can access the intermediate C functions as described above. In "Type-sade Linkage for

C++" (4) an encoding scheme for functions written in C++ that can be linked by C in presented.

The encodirg scheme is designed so that it is easy to determine, if a name is an encoded name.

What name the user wrote, what class (if any) the function is a member of, and what the types of

arguments are in the function. The types are encoded as in Table 2.2.

2-13

For a global function, the name is encoded by appending -F followed by the signature. Figure

2.1(a) shows an example. For a member function in a class, first, the class name that contains

this member function is appended to a number which represents the length of the class name. The

encoded class name then is appended by the member functiou name and two underlines. The design

decision to involve a length is to avoid terminators. Both the class name and user defined type name

require their length in the encoding scheme. Figure 2.1(b) shows how to encode record::update(int).

The ObjectStore function are exactly C++'s syntax, so it should be the same as C++. This

can be encoded and then access provided to those encoded functions from Ada. Rosenberg (18)

designed a prototype of Ada/ObjectStore, which is an interface that allows applications written in

Ada to access ObjectStore. The interface of Ada/ObjectStore is actually done by accessing C++

encoded (mangled) names which are kept in ObjectStore's library. One example, database::get i.U-

databases, is shown in the Figure 2.1(c). The length in here shows that it can be used to repr ient

the length of a user defined type name.

2.5.4 Ada binding to X window. Ada binding' to X windows is a good example ft "Ada

programs accessing C functions. The X window system, developed in the mid 1980s, chang A the

way that user interfaces were developed. The X window system, or X, is a high performan..s, de-

vice independent, network transparent window system that allows fcr the development of portable

graphical user interfaces (20). X windows manages wh t is seen on the display screen. The pro-

grammer is not constrained by any particular policy. As a result, X provides mechanism rather

than policy (12). But the X window system was implemrented in the C language. Therefore, there

was no way for Ada to access X windows. Recogni-ing the benefits of the X window system, some

members of Ada community began working on ways to access the X window system from Ada.

One successful method is by way of a binding.

Under a Software Technology for Adaptable System foundation contract, in 1987 the Science

Applicatiens International Corporation (SAIC) developed Ada bindings to Xlib, which is written in

C. The actual Ada interface is accomplished through the use of Ada pragma interface statements.

A pragpa conveys hiformation to the compiler. The name of interface after pragma means the

Ada compiler allows subprograms written in another language (7). The configuration of the SAIC

binding shows in Figure 2.2 (13).

Some functions are missing from the SAIC binding because of the shortcomings of interface.

One shortcoming is the procedure variables required as parameters to function calls (23). A few

Xlib functions require procedure variables as parameters to function calls. Ada does not directly

2-14

print(int, char, double)

print.Ficd (a)

record::update(int)

update-6recordFi
(b)

r database::get.alLdatabases

stati, void get..alldatabases(int, database**, int&)

SI , I '-, (c) . .
get.-allAatabasesSdatabaseSFiPP8databaseRi

(a) A global function.
(b) A member function in a class.
(c) A ObjectStore member function in the class of database and a ObjectStore defined

type, database.

Figure 2.1. Examples for the function name encoding scheme

2-15

Applicafica

(Ad&)}

SAIC blaiadh (Ad&)

X]•b (C 1R,"U,)

Figure 2.2. Application Program Configuration Using the SAIC Binding

support procedure variables. Another one is the representation of event types as enumerated types.

In the C version the events are represented as integers with a large block of consecutive integers,

beginning with zero, reserved by the X Consortium for future use. X was designed to be easily

extensible. But, by using enumerated types for event types, adding new events is nontrivial because

the programmer n< eds to ensure the position in the enumerated type declaration matches the event

numbers used in the C code. Enumeration types for events limit the extensibility of Ada/X (23).

L6 Summary

OODBMS is a new generation database system. Because traditional DBMSs have proven

inadequae in some applications, the OODBMS is designed to widen the applications of database

technology. The ObjectStore is currently one of the commercial OODBMSs available. It combines

the paradigms of object oriented programming language, C/C++, and capabilities of DBMS. Ada

bindings to C have been implemented in some applications. One milestone is Ada bindings to X

windows. For Ada bindings to a database, the important factor in this effort is how Ada deals with

persistent data. Some features of persistent data, type systems in different languages have been

examined. The purpose of this thesis is to design an Ada binding to ObjectStore to extend Ada's

capabilities in the area of OODBMS.

2-16

/ ..

III. Design and Implementation

S.1 Overview

To design ot an interface between Ada and ObjectStore the designers require a good under-

standing of the two languages and their capabilities as related to the interface. Based on these

requirements chapter 2 described programming language interface to a DBMS, Ada and C/C++

communication, and interface programming from Verdix Ada. In this chapter, the design is then

compared to different models and the best model is chosen to accomplish the task. Finally, the

implementation follows the design paradigm to approach functional completeness. For performance

measurement, the code is instrumented with timing commands where appropriate. Testing is then

accomplished to verify functionality as compared to the ObjectStore.

S.2 The Prototype of Ada/ObjectStore

The prototype of Ada/ObjectStore implemented by Object Design, Inc. is a high level design

providing to basic interface facilities to Ada. The Ada/ObjectStore interface should be complete

and transparent. Performance is an another important factor for evaluating the interface and it

should be as close as C/C++ accessing ObjectStore. Completeness requires that all functionality

in ObjectStore should ideally be accessible from Ada. Transparency should be provided so that

an Ada programmer would not need any knowledge of C or ObjectStore's native facilities in using

the Ada/ObjectStore interface. Finally, we desire the performance of the Ada/ObjectStore inter-

face to be as fast as the performance of the Ob'ectStore C/C++ interface. That is, it provides

near virtual memory access speed to persistent Ada instances. The following is a summary of

Ada/ObjectStore(18).

$.2.1 Ada/ObjectStore interlace. Object Design Inc. provided a prototype interface be-

tween ObjectStore and Ada. This interface is based on the interface facilities supported by Verdix-

Ada. These are PRAGMA INTERFACE, PRAGNA INTERFACE-NOE, PRAIOK LINK-WITH, and PRAGMA

INLINE. Object Design considered the following options in designing the interface (18):

1. Object access

This would provide Ada abstract types for objects actually represented and accessed in

C/C++. Each object in Ada would have one counterpart in C/C++ stored in the Ob-

jectStore database. The Ada type would have no Ada level functionality at all, but would

uniquely ideutify a persistent C/C++ object. All functions affecting persistent objects would

be written in C/C++, not in Ada, using the existing interface (see Figure 3.1). Ada sim-

3-1

N/

70--

Transient Persistent

objects objects

Ada programs ObjectStore

Figure 3.1. Object access

ply handles the OID of associated ObjectStore objects via the interface from C/C++. The

disadvantage of this simple interface is that this would not provide transparency for Ada

programmers. ObjectStore has a characteristic that treats transient and persistent data in

the same way. In this option, Ada programmers lose this characteristic because when they

want to deal with persistent data they must send data to C/C++ to store in a database.

Furthermore, this option implies a rigorously separating persistence store for objects from

the Ada code and data space. Therefore, this option needs a large number of foreign func-

tion calls between Ada and C/C++. These calls will affect performance and may prohibit

applications.

2. Basic persistent Ada instances (Manual schema generation)

This approach directly represents Ada objects in the ObjectStore database. In this approach,

Ada programmers have the same capabilities as ObjectStore programmers in manipulating

both transient and persistent data (see Figure 3.2). The basic requirement of this interface

is to provide a set of Ada declarations for the kernel functions of the ObjectStore librar¶

interface, which has functionalities of ObjectStore dealing with persistent data. In this ap.

preach, transparency to Ada programmers is achieved. The Ada programmers may apply\

these kernel functions without knowledge of the C language. However, because of the lack of

a preprocessor to generate the schema transferring data types from Ada to ObjectStore, they

will have to separately specify ^ descriptions of the Ada types. A C/C++ macro facility can

be provided to ease these definitions.

3. Advanced persistent Ada instances (Automatic schema generation)

This option gives total transparency to Ada programmers. The manual schema as described

3-2

Persist mt bjects

objectsI

Ada programs ObjectStore

Figure 3.2. Manual schema generation

above needs to separately specify C/C++ descriptions of Ada types in a C/C++ macro

language. This option provides a preprocessor to parse Ada type definitions and build Ob-

jectStore compilation schemas directly. This is feasible because the ObjectStore type system

is available at run time and is general enough to represent virtually any type.

I.I. Coripare Ada/ObjectSlore and ObjectSiore. The Ada/ObjectStore interface pro-

vides several of Ada's portable types related to ObjectStore (a list of the most fundamental types

is in Table 3.1) and some of the kernel functions. Table 3.2 showe those functions that parallel

to ObjectStore's functions in C/C++ library. The functions in Ada/ObjectStore dealing with the

database are en ugh to manipulate persistent data. For efficiency, Ada/ObjectStore provides an

interface to C+7 An example of the function "DATABASE.CREATE" is as follovs:

function c.databas.ecreate(PATH: ADDRESS;
MODE: U_MODE;

OVERWRITE: OS.BOOLEAB) return DATABASE;

pragma INTERFICE(C, cdatabase.create);
prapa IZTERPACENAME(c.database.create,

CSUBPPREFXX k "create_.SdatabaseSFPCcLT2");

function DATABASECREITE(PATH: STRING;
MODE: U.MODE :a 80664#;

OVERWRITE: BOOLEAN :a FALSE) return DATABASE is
begin

return
c.database-create (c€ada.to.c (PATN(PATI'FIrT) ' ADDIRESS,

PATH'LENGTM), MODE, B.TOOSB(OVERWR ITE)); end

3-3
A•

C/C++ -OBJECTSTOR TYPES ADA TAIDES_
unsigned ciar osunsignedit8 UNSIG3_..ITINYJNTEGER
signed char os-signedint.8 ITINY-INTEGER
unsigned short os.unsigned.intI J UNSIGNED-SHORT-NTEGER

short os-intl6 SHORT-INTEGER
unsigned int os-unsignedint32 UNSIGNED-INTEGER
int os-int32 INTEGER
int os-boolean BOOLEAN

Table 3.1. Fundamental data types of C/C++, ObjectStore, and Ada

DATBASE.CREATE;
pragma INLINE(DATABASE.CREATE);

The "create_8databaseSFPCciT2" is a C++ mangled name. The function c.ada.to.c pro-

vides the facility of transferring a string in Ada to C++.

ObjectStore's C/C++ library interface allows access to many of ObjectStore's features di-

rectly from C/C++ programs. These features include (17):

* databases and segments,

* roots,

9 transactions,

* references,

* collections,

e queries, and

* versions.

Ada/ObjectStore provides basic functions of databases, roots, and transactions. Segments,

references, collections, queries, and versions are not provided.

Because Verdix Ada has pragma interface.name and interface C options that allow C

functions to be called from Ada, if necessary, it should be not difficult to implement an interfr.ce

that parallels what ObjectStore has. But, it will have some limitations such as relationships which

relies heavily on the syntax and semantics of C++. Some features of ObjectStore's 5nterface are

missed in the prototype of Ada/ObjectStore. These features are mentioned as follows:

* Collections:

A collection is an object that serves to group together other objects. Collections in Object-

Store provide a convenient means of storing and manipulating groups of objects. With this

3X4

facility, objects in the same class are rsansparent to programmers. We can use linked lists in

Ada data structures to implement the same functionality as the collections have, but it will

be complicated. Collections hide a detailed mechanism that manipulates groups of objects

from programmers.

* Version management:

Version management has very important facilities especially for computer-aided design (CAD)

applications. These applications support cooperative work by a number ox engineers on the

same design. Currently, Ada/ObjectStore does not provide version management facilities.

That means Ada/ObjectStore is not currently good in CAD applications, or other applications

which need to check out data for extended periods of time. Version management .eeds two

dasses of functions, configurations and workspaces.

e Exceptions:

Ada/ObjectStore provides an exception handling facility to report errors that arise. They

apply &.n interface that maps each predefined ObjectStore exception to an associated Ada

exception. They are implemented through a routine that utilizes a hash table to determine

the Ada exception m-sociated with the signaled ObjectStorc cxccption. It then calls an Ada

routine which raises the exception. Ada/ObjectStore's packages except. a and except-b. a

(see Appendix C.12 and C.13) provide this one-to-one mapping. For example, the parameter

ERR in the procedure of OS.ADA.EXCEPTION will return an integer that maps to an

exception in ObjectStore. An corresponding exception will be raised in this package, if it

happens. However, except.a and except.b.a only define one exception for the purpose of

demonstrating that it is possible to convey an error message to Ada when an error is arisen

in ObjectStore. For practical application and functional completeaess of Ada/ObjectStore,

except. a and except.b. a are needed to implement all exceptions that ObjectStore has.

3.3 Implementation Issues

Because ObjectStore provides four kinds of interface approaches as described at Section 2.2,

which one will be used must be decided first. Then, what types defined in Ada and their counter-

parts in C need to be considered. Finally, an interface is designed and it contains Ada'F subprograms

to link to their parallel functions in ObjectStore. The followitg discusses the decision that was made

to use the C library interface, compares the type system in the interface, and then describes how

Ada/ObjectStore facilities were implemented.

3-5

Ada/ObjectStore Functions 1 ObjectStore Functions
I (C++ Library)

DATABASEROOT-GETNVALUE database.root::get.value
DATABASEROOT.SET.VALUE database-root::set -value
PERSISTENT-NEW void*::operator new
DATABASECREATE database::create
DATABASE-LOOKUP database::lookup
DATABASE-OPEN database::mpen
TRANSACTION.GET-CURRENT transaction::get-.current
rRANSACTION.BEGIN transaction::begin
TRANSACTION-COMMIT transaction::commit

Table 3.2. Functions of Ada/ObjectStore and their equivalent functions in ObjectStore C++
library

3.3.1 C Library Interface. Clearly, only two kinds of interfaces, C and C++, are con-

cerned. Using C++ library interface with class template DML or the C++ library interface with

class templates will be complex because of the need to encode class names in the mangled C names.

Furthermore, the DML can not be used in the interface unless a preprocessor is Implemented. To

implement the class template and the preprocessor in the interface will be more complicated t- an

the C/C++ library interface. The decision to use the C library interface is based on:

1. The syntax of languages:

Because both Ada and C are not OOPL, they do not provide the concept of class. Also, the

syntax and object defined in Ada and C are almost same. Most functions in the C library

can be exactly replicated in Ada. For example, a function to create a database root designed

in Ada "function DATABASE.CREATE.ROOT(DB : DATABASE; NAME: string) return

DATABASE.ROOT;" is exactly the same as "database-root * database.create.root(database
*db, char *na-de)" in the C library. The interface in Ada is done by directly putting database..

create.root in a statement praepsa ITERFACE.NAMP. Nowever, the same function in C++ is

a member function defined in clans database, which is " database-root * create.root(char
*name)". Because, in this case, it is in the class of d&tabase, the parameter of database

is not required. This is also part of the distinct syntax in C++, which provides facilities

pointing to member functions. This is quite different in comparison to C and Ada.

2. The Complexity of Ada/ObjectStore Interface:

Because C++ was designed using a preprocessor to convert C++ programs to standard C

before they are compiled, all C++ functions, as in Table 3.2, can be represented by their

mangled names as shown in Table 3.3. 1The interface of Ada to C++ library is actually done

3-6

ObJectStore Functions J ObjectStore Functionsg -Lia ry (mtangled name)5 C Libraryote1

set.value_13database.rootFP5.Pvts database.rootget-.value
set .value_13dat abasezrootFPvPS.Pvts database-root-set .value " "

nw.FUiP8databaseP5.PvtsiPv objectstore.alloc
createSdatabaseSFPCciT2 database.create
lookupSdatabaseSFPCci database Jookup
open-8databaseSFPCciT2 database.open
get.current-I ltransactionSFv transaction.get-.current
begin- ltransactionSF2 transaction.type.enum transaction.begin
commitl ltransactionSFPlltransaction transaction.commit

Table 3.3. Functions of ObjectStore C++ library (mangled name) and the same functions in C
library

by tbh mangled name, which is put in the statement pragma INTERFACI-AME. Table 3.3 also

shows the same function of each C++ mangled name and its corresponding function in C. It

is obvious that the C++ mangled name is more complicated than the name in the C library.

The main concern of this thesis is to implement an interface from Ada to access ObjectStore.

That means the goal of this design is to prove that the interface, Ada/ObjectStore, could be done

and the performance is not greatly altered. The interface of Ada/ObjectStore can be done by using

ObjectStore C and C++ library, but it will increase the compleuity if the C++ library is used. So

the design decision to interface Ada/ObjectStore was decided using C library functions.

3.S.2 T2pes in the Interface. Ada/ObjectStore provides persistent objects for Ada. How-

ever, types written for the schema raus. be based on parallel types between Ada and ObjectStore.

For this reason, types defined in Ada are matched to C in a manually constructed C macro. To

implement an interface, types defined in the interface should be considered first.

Ada is a strongly typed language. That rleans obj of a given type may take on only those

values that are appropriate to the type. In addition, the only operations that may be applied to

an object are those that are defined for its type. Ada p des a more advantageous type system

than C. Private type ability is an ,example. For interfac ig with another language, representation

clauses can be used to specify the mapping between types.\ Section 2.5.1 has discussed the concept

of creating parallel data types between Ada and C. Scalar, composite, and access type have been

mentioned. Tables 2.1 and 3.1 show scalar types in C and their counterpart types in Ada.

Now, about implementation issues, because the main purpose of involving ObjectStore is to

provide data persistence for Ada, a detailed observation needs to be done in which the types in C

3-7

I-

can map types defined in Ada. One fundamental concept is that all types declared in the interface

map through their base type that is a predefined physical layout. That means an abstract type

defined, for example AGE, in Ada it it base type is short-integer, the interface type in C must

be short because the physical layout in both types, shortJ.teger in Ada and short in C, are

represented in 16 bits. Nothing needs to be done with abstract type AGE. Another example for

using a representative clause is as follows:

type TEMPERATURE is range -100 .. 130;
for TEMPERATURE'SIZE use 8*BITS;

As a result of this declaration, every object of type TEXPERAT'RE will occupy no greater than

8 bits of storage. For physical alignment, if the user uses such a specification, a sign char should

be used in C because of 8 bits of storage. A representative clause provides effic'ent feature for

Ada. However, representation specifications are implementation dependent; a given compiler must

process the semantics of each clause correctly. Otherwise, the clause will have no effect (6:324).

The programmer must bear in mind that he must implement the same size (or storage) of type in

C to correspond to the size declared using representation specification in Ada. It is complicated

and unwise tc. define a type if its size is not 8, 16, 32, or 64 bits.

A floating type can be assigned and described in terms of attributes called precision and range.

The precision describes the number of significant decimal places that a floating value carries. The

range describes the limits of the largest and smallest positive floating value that can be represented

in a variable of that type. The floating types in Ada include the type float. An implementation

may also have predefined types such as short-float, which has less precision than float. Ada

provides an explicit mechanism to define a precision floating type. By defaldt, a 32-bit word

represents the type short..float, and 64-bit for type float. This corresponds to the type float

and double, respectively, in C. The number of decimal digits of significance in C is 6 and 15 digits

for float and double, respectively. This is the same as in Ada. The prgrammer needs to notice .

that a floating type declared in Ada and its corresponding type in C have the same storage size,

32 or 64 bits, for example. For the significant digits of the floating types, Ada provides an ability

to define the number of decimal digits of significanze but the number of decimal digits must be set

equal or less than the maximum digits supported by the Ada compiler and machine used. C does

not provi.e this ability so that the number of decimal digits that are always given by the maximum

digits supported by the C compiler and machine used. Because the Verdix Ada and traditional C

compiler provide the same maximum decimal digits and the interface is implemented in the same

computer, the floating type defined in Ada will not lose its accuracy when it interface with float and

double in C, respectively. One release note from Verdix Ada (24) pointed out that the programmer

3-8

..... ,.- % , -. ,,.,.,.. . ..-- , /- . . ',

need beware of passing floating point parameters from Ada to C using pragma INTERFICE. It does

not work correctly in some cases when there are more than six words of parameters.

The fi&ed point type in Ada provides an absolute accuracy. There is no similar type provided

in C. The implementation of the interface for the fixed point type in Ada has the same concern

as the floating types-accuracy. The Verdix Ada provides 32-bit storage size for the fixed type and

its maximum decimal digits is 3 (24). It should be no problem that define a float type in C to

receive and store the fixed type from Ada.

For predefined type and subtype one needs to trace its parent type (base type) to implement

a co-rert ?onding type in C. The range constraint of scalar types in Ada provides a better practice

for defining explicitly the bounds of its types. The Ada compiler then chooses the appropriate

underlying representation. However, in the interface, the base types are more interesting than each

of these constrained types; the Ada programmer may design an abstract data type to map to the

real world, but he must put a corresponding type in C to store the value from Ada applications.

The compound type in Ada requires an access type to point to it in the interface so that

objects of the compound type crossing the interface boundary is accomplished via the access type. A

parallel data structure must declare and strictly demand a physical alignment to the corresponding

type in Ada. That means the storage size of each component in C needs to align in Ada.

The enumeration type is like tOe mutual properties of scalar and compound type. It iz-

constructed in a similar way in Ada and C, using a variable that presents an offset from that

enumeration type. If programmers declare an enumeration type in Ada and store it as an int in

C, there is no difference in using an enumeration type than using a scalar type in the interface.

There are two possible implementation methods: one is using Ada's attribute POS to convert the

enrmeration variable to an integer before it is sent to C, anothter one is to directly send to C

as au enhmeration ype. Both ways work fine. However, the disadvantage for the former one is

that the programmer needs to do conversion task, and an extra integer variable is required. The

disadvantage for the latter is that the enumeration type must be known in the interface package,

by declaration or by using the with clause. Moreover, the Ada compiler will generate a warning

message, as follows, if tLa latter one is used.

warning: 31 13.9(4): discrete type arguments to 'C' must be 32 bits wide.

Boolean in Ada is a predefined enumeration type. To implement a co-responding type in C

is the same as the enumeration type described above.

Table 3.4 summarizes all types in Ada and their counterpart types in C.

3-9

-/
/

r Size ADA TYPES (Verdix Ada) IC (Traditional C)]
[8bits [CHARACTER char ____....

8 Uits T TINYINTEGER signed char
11 bits SHORT.INTEGER short
j'2 bits POSITIVE int
J2 bits NATURAL int
32 bits INTEGER int
32 bits SHORT-FLOAT (floating point) float
64 bits FLOAT (floating point double
32 bits FIXEDPOINT-TYPE float
32 bits I ENUMERATION TYPES .it .. :'.-....
32 bits jBOOLEAN int
Variablet ARRAY TYPES array types

(Interface by the address
of the first element) ___--__

Variablet STRING TYPES char*
(Interface by the address ,
of the first character) _ _ _

VariJblet RECORD TYPES struct
(Interface by access types)

32 bits ACCESS TYPES J pointer
t sizes of the the elements must be the same in both Ada and C

Table 3.4. The data type and alignment size using in Ada and C/C++

3-10

3.4 Implementation Ada/ObjectStore Facilities

Verdix Ada !hows how to create parallel data types and declare external subprograms. The

prototype of Ada/ObjectStore, a high level view, then shows how to design a simple and effi-

cient model: basic persistent Ada instances (manual schema generation). This work continues the

approach of manual schema generation from the prototype of Ada/ObjectStore and expands its ca-

pabilities. Another concept of Ada/ObjectStore designed is that all PRAGMI INTERFACE statements

are put in the package body. As we know the Ada package, one of the fundamental program units,

permits a user to encapsulate a group of logically related entities. As such, they directly support

the software principles of data abstraction and information hiding. The specification of packages

forms the programmer's contract with the package client. A client never needs to see the package

body %nd does not need to know how the functions work. Some functions in ObjectStore need to be

handled before being called from Ada because of incompatible parameters, such as STRING type.

In these cases, an intermediate subprogram is needed. However, most functions in ObjectStore can

be directly called from Ada using PRAGMA INTERFACE without special handling. Ada/ObjectStore

follows Ada's software design principles that enforces a clean interface of a package specification

to clients; all PRAGMA INTERFACE statements are collected in the package body even without an

intermediate subprogram.

After the functions of ObjectStore were analyzed, there are some new operations and types

that need to be addressed. Those are described as follows:

e New types from the ObjectStore:

The new types from ObjectStore, such as osncollection* or os-cursor* which are pointer

types, are implemented the same a& Ada/ObjectStore: all types of pointers in ObjectStore

are handled in Ada as a new integer. Persistent objects are manipulated by ObjectStore. Ada

acts like a temporary holder that receives the pointer from and sends it back to ObjectStore.

Therefore, these types are declared as a user defined type and its base type is integer. For

exzaLple OS.COLLECTIGN is defined as follows:

type 0STORE.OPAQUE is now ZNTEGER;
type 03.COLLECTION is now OSTORE.OPAQUE;

* Procedure variables:

Ada does not support procedure variables (23). It is difficult for Ada is to simulate a parallel

function in which C can combine procedure variables and a bit-wise operator in a simple

statement. However, for this simple statement, Ada needs a lot of works to simulate it. For

3-11

//

example, in the function OSCOLLECTION.CUANGEBEHAVIOR, one of its parameters is BEHAVIOR

and its type is OS.UNSIGNED-INT32. In C, it is defined a type as follow:

typedef enum ooucollection.behavior {
on-collectionnmaintain-cursorsil,
ox-collection-allovwduplicates2l< <l,
oscollection-signal-duplicates=l<<2,
os-collection.allow-nulls=l<<3,
oascollection.maintain-order-l<<4,

} ox-collection.behavior;

When the BEHAVIOR is sent to ObjectStore, it is simple to use randomly combined variables

in the parameter list to compute a OS.UNSIGNED.INT32's value, such as:

oscollection.chauge-behavior(os.coll,
oscollection.maintain_.cursors I
ob-collection-allov.duplicates I
on-collection-maintain..order)

Fortunately, in this special case each procedure produces a valuc that is power of 2, and the

bit-or operation then is fundamentally the same as the add operation. Two ways can be used

to simulate this behavior in Ada:

1. Declaring global constants:

NIINTAINCURSORS constant OS-UNSIGNED-INT32 : 1;
ALLOW-DUPLICATES constant OS-UNSIGNED.INT32 : 2;
SIGNALDUPLICATES constant OS-UNSIGNED.INT32 := 4;
ALLOWNULLS constant OS-UNSIGNED.INT32 : 8;
MAINTAIN-ORDER constant OSUNSIGNED.INT32 := 16;

The advantage of this way is that when the value i-f BEHAVIOR is sent to ObjectStore it

is easy to perform a bit-or operation by adding constant integer variables. The above

function could be simulated as follows:

onscollection.change-behavior(OSCOLL,
NAINTAINCURSORS +
ALLOW-DUPLICATES +
NAINTAINORDER)

However, the disadvantage of this way is the value of BEHAVIOR in Ada received from

ObjectStore. The value shown to the user is just an integer such as, for example, 1. This

is an unfriendly user interface. The ihterface should provide a friendly user interface so

that the value shown to user should be an enumeration value such as, for example,

MAIXTAIN.CURSORS. Ada does not allow a type overloading in the same scope. In this

3-12

-t .- ,, ', ,

case, if NAIlTAIN-CURSORS is declared as constant OS..UNSIGND-I.NT32, Ada does not

allow it to be declared as a value in in enumeration type in the same scope.

2. Declaring an enumeration type:

type OS.COLLECTIONBEHAVIOR is (MAINTAINCURSORS,
ALLOW-DUPLICATES,
SIGIAL-_DUPLICATES,
ALLOWNULLS,
KAINTAINORDER);

To implement in this way, an additional subprogram is needed to parse an input string

and then to compute the result of BEHAVIOR before it is sent to ObjectStore. The same

function simulated to C is as follows:

ou-collection-change-behavior (OS_COLL,
"NAIITAINCURSORS

ALLOW.DUPLICATES
MAINTAIN.ORDER")

The disadvantage of this method is that it involves another subprogram and surely takes

more time. However, the advantage is that when the value of BEHAVIOR in Ada is received

from ObjectStore, it can be easily transferred to a meaningful word such as, for example,

an enumeration value-NAINTAINCURSORS.

User-defined enumeration types help to make programs more readable, understandable,

and maintainable. The maintainability of software written in Ada is one positive aspect

in comparison to C. Considering the benefits of user-defined enumeration types, declaring

an enumeration type is a better approach than the declaring global constants.

e Naming convention:

In order to implement the same functionality that ObjectStore has from Ada, the subpro--

gram's name in Ada should be exactly the same as in the ObjectStore. For example, the func-

tion os.collection.create in ObjectStore is implemented in the function OS.COLLECTION_

CREATE in Ada. The only difference is that the former is in lowercase, but the latter is in

uppercase.

After these consideration mentioned above have been done, the functions in the Ada/ObjectStore

corresponding to the ObjectStore are implemented readily, mapping functions in ObjectStore with

Ada subprograms.

3-13

Ai "

/I/

3.5 Testing of Ada/ObjectStore

The purpose of the iesting is to check the execution of the software against the requirements

in the specifications of Objectstore Reference Manual. Testing is done by a group of functions that

have been implemented.

3.5.1 Testing Ada/ObjectStorc functionality. Testing of Ada/ObjectStore is based on

subprograms implemented. However, test programs are designed from a simple program which

works correctly and then inserts a new subprogram when possible in a suitable position. A software

testing method is used: white box testing that requires execution each statement at least once. All

results are compared in compliance with the ObjectStore Reference Manual.

3.5.2 Performance Testing. Cattel points out that "The most accurate measure of perfor-

mance for engireering app'cations would be to run an actual application, representing the data in

the manner best suited to each potential DBMS." (9:364) He summarizes the three most important

measures of performance in an object-oriented DBMS as:

"* Lookup and Retrieval. Look up and retrieve an object given its identifier.
7

" Traversal. Find all objects in the hierarchy of a selected object.

e Insert. Insert objects and their relationships to other objects.

Berre and Anderson's HyperModel benchmark (5) presents a similar approach to performance

measurement. In addition to the operations proposed by Cattel, the HyperModel benchmark

includes:

* Sequential Scan. Visit each object in the database sequentially. :\ Closure Operations. Perform operations on all objects reachable by a certain relationship

from a specified object.

e Open-and-Close. Time to open and close the database.

We want to compare the performance of Ada/ObjectStore to ObjectStore. The Sun operating

tem provides profiling options which are implemented by the compiler. This profiling provides

de ed timing and usage statistics from processes specified by the user. A program (Command-

St ts.c) (11:28) is written for gathering statistics. CommandStats rmakes calls to the Unix functions

getrusag. and gettimeofday and calculates processing time. Time is measured in CPU, uszr, and

elapsed time. The CPU time is the total amount of time spent executing in system mode. The

user time is the total amount of time spent executing in user mode. The elapsed time is the total

3-14

amount of time spent executing a process. Two CommandStats are needed in a testing program,

and they are put before and after the module which is measured. Because CommandStats.c is a

C program, it can directly be used in testing program written in C. However, a testing program

written in Ada can not directly call CommandStats.c. An interface package, statis.ada~a and a C

program, stat.c, are required to perform the job of accessing CommandStats.c

Performance testing compares the differeaces in access time between programs written in

Ada/ObjectStore and ObjectStore that access the same ObjectStore database. The two programs

are designed to correspond to each other as closely as possible. For example, the test sequence in

Ada/ObjectStore is to call OSCURSORCREATE and at same place in the test sequence for ObjectStore

a corresponding function os.cursor-create is used.

The performance comparisons are conducted using these guidelines as mentioned. One ex-

ception is that the Closure Operations in the HyperModel benchmark are not measured because

the ObjectStore C library interface does not provide the capability of relationships. Also, because

the performance compares the difference between Ada/ObjectStore and ObjectStore C library in-

terface, a complicated data model is not involved currently in this performance testing. Two kinds

of simple objects were created to collect statistical data. They are classified in two test groups.

1. A single object:

A single integer "count" is stored in ObjectStore. Three test programs were implemented;

two of them are written in Ada accessing C library and C++ library (mangled name), and

the third is written in C. The test programs, hello.ost.a(c) in different directories provide the

performance testing for accessing this integer "count". (Appendix B.14 and B.12)

2. A compound object:

Two record data structures LINK-NOTE and NOTE.COL, which contain 108 and 104 bytes respec-

tively, were implemented. The database buote .db was created to store 10,000 LINK.NOTEs

for Ada/ObjectStore test programs and the database ca'te.db was create to store 10,000

iS"OTL'Ls for Ada/ObjectStore collection test programs. The data structure for LINK.NOTE

is declared as follows:

struct linknote

imt priority; /* 4 bytes */
char name[20]; /* 20 bytes */
char note[80J; /* 80 byes /I
struct link-note *next; /* 4 bytes */

3-15 Sd

The data structure for NOTECOL is almost the same as LINKNOTE except the field *next.

The member of struct *next is no longer needed because of the ObjectStore collection that

already provides facilities to manipulate its elements. The same structures were defined in

Ada as follows:

type LINK-NOTE;
t•pe LINKNOTEPTR is access LINK-NOTE;
type LINK-NOTE is
record

priority: integer;
name : string(1..20);
note : string(i..80);
next : link'note'ptr;

end record;

Two test programs, adaobj .a and adaobj. c, also perform the job of testing basic functions

for Ada and C respectively (Appendix B.2 and B.6). The extended functions "collection" is tested

by adacol. a and adacol. c (Appendix B.4 aLd E.8). The performance is measured in the area of

initializing, lookup and retrieval, sequential scan, and opening and closing a database.

* Initializing a database. The function initia•-db inserts 10,000 objects in the database.

e Opening and closing a database. The function DATBASEOPEN.CLOSE measures the time

required to open and dose a database 10 times.

* Look up and retrieve an object from the database. The function DATATRETRIEVE searches the

database until it finds the specified object and then displays it.

* Sequential scan. The DATA-SCAN procedure finds the database root and then gets objects one

by one in the database and displays them.. .

In order to observe the performance change after both Ada and C added the facility of

data persistenc6, program purobJ. • and purobj .c were implemented for Ada and C, respectively

(Appendix B.9 and B.10). The two programs are the same as adaobJ. a and adiobj. c except that

all functions calling the database are removed. That means all objects created are transient only.

3.6 Summaryj

The Ada language provides abilities to interface different languages. The Ada compiler

gives a specific and detailed method to implement variables and subprograms in the interface.

Ada/ObjectStore is a milestone for Ada accessing a database. We can expand its functions and

implement those functions in a set of abstract modules, which is Ada's package. The abstract

3-16

' I

module is used as an interface layer between the application module, which is Ada programs, and

the concrete module, which is pure ObjectStore functions. Ada programmers create Ada programs

as they used to be. They don't need to kvow how the persistent data are handled by a concrete

module. The collection facilities in Ada/ObjectStore enhance a programmer's designing abilities

and, at the same time, the maintainability is accomplished in short and simple statements. The

testing of Ada/ObjectStore is done by functionality and performance. After the testing, we can

compare the difference between Ada/ObjectStore and ObjectStore using the C library interface.

/

3-17

IV. Results Analysis

4.1 Overview

The primary objective of this thesis is to show that an interface of Ada and ObjpctStore

can provide almost the same functionality and performance as ObjectStore. The database was

designed in the same way as in ObjectStore and it is described in Section 3.5.2. Because all objects

are stored into ObjectStore, not Ada, so as long as an object has crossed the boundary of interface

into ObjectStore, it is handled by ObjectStore. Performance is the vital factor in judging the

difference between Ada/ObjectStore and ObjectStore. However, because the performance does not

measure the efciency of ObjectStore itself in managing objects, two simple objects are required to

be created and stored in these tested databases. This chapter points out the different performances

for Ada and C in manipulating the database.

4.2 Performance Comparison of Ada/ObjectStore and ObjrctStore

The results of the performance testing where a single integer is stored in ObjectStore are

shown in Tables 4.1 and 4.2. From these results, some conclusions can be drawn. Table 4.1 and

Table 4.2 show that when manipulating a single integer, if the integer was retrieved and modified

once, Ada/ObjectStore's performance is much slower than C/ObjectStore's. However, if it runs 100

times, Ada/ObjectStore's performance is close to C/ObjectStore's. Table 4.3 shows the difference

between two Ada/ObjectStore programs, that one run using the C++ mangled interface is better

than one run using the C library interface. However, the difference in performance between these

two programs decreases when they run 100 times.

The results of the performance for testing a database created by ObjectStore using a linked list

and ObjectStore using collections are shown in Table 4.4 and 4.5. From the testing results of initial-

ization and opening and closing a database, Ada seems doing a better job on dynamic storage allo-

Criteria Tested Resource Application Programs Percent
Measured I heoost.a Ihello-ost.c .Change

Run Once User time (seconds) 0.032 0.038 -15.8
CPU time (seconds) 0.345 0.108 +219.4
Elapsed time (seconds) 0.778 0.332 +134.3
Page Faults without 0/0 215.883 142.000 +52.0

Run 100 Times User time (seconds) 0.680 0.635 +7.1
CPU time (seconds) 1.853 1.522 +21.7
Elapsed time (seconds) 13.611 12.666 +7.5

1 Page Faults without I/0 1007.333 939.167 +7.3

Table 4.1. Benchmark performance results for hello.ost.a and hello.ost.c

4-1

A ..

Criteria Tested Resource Application Programs I-Percent
Measured I hello-ost.a I heUo.ost.c j Change

Run Once User time (seconds) 0.043 0.038 +13.2
CPU time (seconds) 0.195 0.108 +80.6
Elapsed time (seconds) 0.579 0.332 +74.4
Page Faults without I/O 211,000 142.000 +48.6

Run 100 Tim,-s User time (seconds) 0.677 0.635 +6.6
CPU time (seconds) 1.713 1.522 +12.5
Elapsed time (seconds) 13.275 12.666 +4.8

I Page Faults without I/O 1003.000 939.167 +6.8

"Table 4.2. Benchmark performance results for hello.c.,- and hello.ost.c (C++ mangling
interface)

Criteria Tested Resource Application Programs Percent
Measured helost.a hello.ost.a Change

_C++ Library _C _ibrary

Run Once User time (seconds) 0.043 0.032 +34.4
CPU time (seconds) 0.195 0.345 -43.5
Elapsed time (seconds) 0.579 0.778 -25.6
Page Faults without I/0 211.000 215.883 -2.3

Run 100 Times User time (seconds) 0.677 0.680 -0.4
CPU time (seconds) 1.713 1.353 -7.6
Elapsed time (seconds) 13.275 13.011 -2.5

I Page Faults without I/O 1003.000 1007.333 -0.4

Table 4.3. Benchmark performance results for hello.ost.a accessing C++ and C library interface

4-2

Criteria Tested 1 Rsource Application Programs Percent
Measured adzlobj.a adaobj.c Change

Initialize User time (seconds) 1.233 0.966 +27.6
(10,000 CPU time (seconds) 0.321 0.330 -2.7
Objects Elapsed time (seconds) 6.502 4.760 +36.6

inserted Page Faults without I/0 290.500 319.000 -8.9

Open & Close User time (seconds) 0.076 0.0M9 +28.8
CPU time (seconds) 0.070 0.119 -41.2
Elapsed time (seconds) 0.388 0.269 +44.2
Page Faults without I/0 60.000 60.000 0.0

Look up/Retrieve User time (seconds) 0.023 0.013 +769
CPU time (seconds) 0.068 0.083 -18.1
Elapsed time (seconds) 0.095 0.097 -2.1
Page Faults without I/O 134.500 134.000 +0.4

Sequential User time (seconds) 4.200 0.641 +555.2
Scan (With Output CPU time (seconds) 30.295 14.576 +107.8
to Screen) Elapsed time (seconds) 181.928 144.643 +25.8

Page Faults without I/O 265.667 267.875 -0.8

Sequential User time (seconds) 0.046 0.029 +58.6
Scan (Without CPU time (seconds) 0..46 0.175 -16.6
Output To Elapsed time (seconds) 0.195 0.203 -3.9
Screen) Page Faults without I/O 265.000 265.375 -0.1

Table 4.4. Benchmark performance results for adaobj.a and adaobj.c

Criteria Tested Resource Application Programs Percent

_ Measured [acolfa I adac0:c Change

Initialize User time (seconds) 2.771 2.633 +5.2
(10,000 CPU time (seconds) 0.254 0.419 -39.4
Objects Elapsed time (seconds) 6.671 7.464 -10.6
inserted Page Faults without I/0 347.000 360.000 -3.6

Open & Close User time (seconds) 0.076 0.070 +8.6
CPU time (seconds) 0.06 0.1.15 -58.6
Elapsed tine (seconds) 0.289 0.285 +1.4
Page Faults without I/0 60.000 60.000 0.0

Look up/Retrieve User time (seconds) 0.277 0.266 +4.1
CPU time (seconds) 0.202 0.186 +8.6
Elapsed time (seconds) 0.476 0.451 +5.5

Page Faults without I/0 286 286 0.0
Sequential User time (seconds) 4.520 1.035 +336.7
Scan (With Output CPU time (seconds) 30.625 13.305 +130.2
to Screen) Elapsed time (seconds) 191.779 128.191 +49.6

Page Faults without I/0 299.833 299.500 +0.1
Sequential User time (seconds) 0.113 0.106 +6.6
Scan (Without CPU time (seconds) 0.033 0.026 +26.9
Output To Elapsed time (seconds) 0.149 0.133 +12.0
Screen) Page Faults without I/0 37.250 34.000 +9.6

Table 4.5. Benchmark performance results for adacol.a and adacoLc

4-3

- . • :\" ..i ' y,• .

Criteria Tested Resource Application Programs j Percent
Measured purobj.a purobj.cI Change]

Initialize User time (seconds) 0.267 0.195 +36.9 "
(10,000 CPU time (seconds) 0.147 0.218 -32.6 .
Objects Elapsed time (seconds) 0.414 0.412 +0.5
inserted Page Faults without I/0 0,000 0.000 0.0
Look up/Retrieve User time (seconds) 0.007 0.005 +405.9

CPU time (seconds) 0.005 0.005 0.0
Elapsed time (seconds) 0.012 0.011 +9.1
Page Faults without I/O 0.000 0.000 0.0

Sequential User time (seconds) 4.267 1.397 +205.4
Scan (With Output CPU time (seconds) 34.Z94 9.206 +273.6
to Screen) Elapsed time (seconds) 335.349 141.660 +136.7

Page Faults without 1/0 295.500 306.000 -3.4
Sequential User time (seconds) 0.015 0.015 0.0
Scan (Without CPU time (seconds) 0.033 0.038 -13.2
Output To Elapsed time (seconds) 0.050 0.053 -5.7
Screen) Page Faults without I/O 294.000 295.000 -0.3

Table 4.6. Benchmark performance results for purobj.a and purobj.c

Criteria Tested Resource Application Programs Percent
Measured adaobj.aI purobj.a Change

Initialize User time (seconds) 1.235 0.267 +361.8
(10,000 CPU time (seconds) 0.321 0.147 +118.4
Objects Elapsed time (seconds) 6.502 0.414 +1470.5
inserted Page Faults without 1/0 290.500 0.000 0.0
Look up/Retrieve User time (seconds) 0.023 0.007 +228.6

CPU time (seconds) 0.068 0.005 +1260.0
Elapsed time (seconds) 0.095 0.012 +691.7
Page Faults without I/0 134.500 0.000 0.0

Sequential User time (seconds) 4.200 4.267 -1.6
Scan (With Output CFU time (seconds) 30.295 34.394 -11.9
to Screen) Eapsed time (seconds) 181.928 335.349 -45.7

""Page Faults without I/0 265.667 295.500 -10.1
Sequential User time (seconds) 0.046 0.015 +206.7
Scan (Without CPU time (seconds) 0.146 0.033 +342.4
Output To Elapsed time (seconds) 0.195 0.050 +290.0
Screen) Page Faults without I/O 265.000 294.000 -9.9

Table 4.7. Benchmark performance results for adaobj.a and purobj.a

4-4

* a

SCriteria Tested I Resource I Application Programs Percent .
Measured aadaoljx 2 urobj.c Change j

Initialize User time (seconds) 0.966 0.195 +395.4
(10,000 CPU time (seconds) 0.330 0.218 +51.4
Objects Elapsed time (seconds) 4.760 0.412 +1055.3
inserted Page Faults without I/O 319.000 319.000 0.0
Look up/Retrieve User time (seconds) 0.013 0.005 +160.0

CPU time (seconds) 0.083 0.066 +1560.0
Elapsed time (seconds) 0.097 0.011 +781.7
Page Faults without I/O 134.000 0.000 0.0

Sequential User tin- (second;) 0.641 1.397 -54.1
Scan (With Output CPU time (seconds) 14.576 9.206 +58.3
to Screen) Elapsed :irt (seconds) 144.643 141.660 +2.1

Page Fau;lt without I/O 267.875 306.000 -12.5
Sequential User time (seconds) 0.029 0.015 -80.7
Scan (Without CPU time (seconds) 0.175 0.038 +360.5
Output To Elapsed time (seconds) 0.203 0,053 -61.7
Screen) Page Faults without I/O 265.375 295.000 -10.0

Table 4.8. Benchmark performance results for adaobj.c and purobj.c

cation and handling a pointer; the CPU time of Ada/ObjectStore is faster than C/ObjectStore. The

sequential scan consistently shows that moving a pointer along the linked list of Ada/ObjectStore

is indeed faster than what C/Object.tore does. The performance that varies most significantly

in both Tables is in sequential scan. CPU time and User time of Ada/ObjectStore are over 2

times slower than that of C/ObjectStore. In the testing subprogram of sequential scan, timing

is measured from traversing the link list and printing every note when it is traversed. In order

to find out why the performance varies so significantly, a small change in testing subprogram of

sequential scan was made. The testing only let processes traverse notes, but !very note traversed

does not have to be printed out to the rcreen. The results of the performance tests are shown in

Table 4.4 and Table 4.5. It shows the performance is not much different between Ada/ObjectStore

and C/ObjectStore. The main 'actors affecting the result of performance still depends on the two

languages' own abilities. The performance of T -T.10 in Ada is slower than the performance of

prn:•tf in C.

Tables 4.6 - 4.8 show the different performance of Ada and C in manipulating transient and

persistent data. Table 4.6 shows the test of a transient object only. Ada still does well in storage

allocation. The pointer moving along the linked list is good, too. Consistently this shows that

Ada is indeed good at handling the pointer movirg. Both Ada and C performances decrease in

order to provide data persistence. However, Table 4.7 and Table 4.8 show that the performance

degradation is not much different between Ada and C when accessing ObjectStore.

4-5

Size in Kbytes Percent

Files Written .u Ada Written in C Change (Yo) I
[Helo.ost Source file 1.5 1.0 +50.01

[Excutable file 1,51K.5 1,327.1 +14.2

Adaobj Source file 854 8.5 0___
(Excutable file) 1,548.3 1 1,343.5 +15.q2•

Adacol Source file 9.6 8.8 +9.1
(Excutable file) 2,400.2 1 2,195.5 +9.3

Table 4.9. Comparison of file size written in Ada and C (static binding)

Space usage is worthy of some examination. Source programs, executable programs and

databases are observed. As we understand, source files are heavily dependent on the programming

behavior of programmers. The size of executable programs are dependent on compilers used. Due

to compiler limitations, we needed to use static binding when performing the link. Table 4.9 shows

that both application programs' sizes and executable programs' sizes in Ada are larger than C's.

Strong type checking and the interface programs added overhead can probably explain this.

4.3 Problema Encountered

One of the objectives was to expand ObjectStore functions in Ada/ObjectStore as much

an possible. Some difficulties arose because of the quite different syntax of the two languages.

Most problems are categorized by understanding ObjectStore C library functions, limitations of

the interface between Ada aud C, and losing the ability of the programming tool-the debugger.

.-4.3.1 Debugger. Most programs have errors in syntax and semantics. Ada is a strongly

typed language. It can find syntactic problems at compile time. However, at run time, semantic

errors need a debugger to trace out. The debugger can detect and report on a wide variety of

problems, including variables that are used before they are set and after, and arguments in functions

changed after functions are called. Verdix has a debugger, a.db, but it seems that it can not debug

programs written in Ada/ObjectStore. When the debugger was executed, it would stop at statement

"DATABASE-OPEN" and give an error message as follows:

"Segmntation fault" I/O error: trying to read u.u.code [Mnix errno: 53

-- Segpentation Violation (SIOSEGV) code: 256 (u.cod.: -1)

All the Ada/ObjectStore programs I wrote are small test programs. Usually they are not

over 300 lines. However, in a practical application system, programs are commonly over several

" 4-6".

thousand lines. Without a debugger, a big obstacle lays in the way of developing a system using

Ada/ObjectStore.

4.3.2 Understanding 0jectStore. ObjectStore's documentation mainly describes C++

library functions, and some of them have examples shown in the User Guide. C library fuuctions

are listed in the Reference Manual and the reader is referred to see the C++ analogous functions

for detailed information. Theoiwtically, C++ and C are analogous. However, there are some cases

where C is not quite compatible with C++ (11:41). Casting is used heavily in C, but not in C++

because C++ has a stronger type checking ability. O0.CURSOR is another example. In the C++

library, OS.CURSOR is declared a class and a constructor OS.CURSOR. To create a OS.CURSOR

is to initialize the class OS.CURSOR with the Irequired argument, OS.COLLECTION. An example

is "os.cursor cur(osacollection)':. There are no pointer values returned. However, OS.CURSOR.

CREATE in the C library has quite a different syntax in which it will simply ref urn a pointer th.nt

points to one element associated with its collection.
i

Databas.ecrea-e and database-l.ookup do not work with static binding. To remedy this, a

program was implemented to perform only one job, creating a dat..')ase. After the program created

the database, the perfoimance testing was then continued.

Error messages indicated what errors o~curred, but the specific information related to the

error is not fully explained. As previously stated, database.create does not wor' in static binding;

the error message indicates "some kinds of initialization needed to be done", but it does not show

what kinds of initialization and how to initialize.

4.3.3 Interface Limitations. Besides the limitation of Ada/C interface for handling pro-

cedure variables, the Query facility in ObjectStore has a pre-&aalyzed query. To use this facility,

it requires three steps (17:150):

1. analysis of the query expression,

2. binding of the free variable and function references in the query, and

3. actual interpretation of the bound query

The problem happens at the os.keyvord-argi-ist* when processes go to the actual interpretation

of the bound query. The function os.bound.query takes two arguments: a pre-analyzed query, and

a keyword.arg list. It is defined as follows:

xtezs os.bouand-query os.bonnd-qrery.createe(
oscoll.querye/* the query to bind */

4-7

\- \

R "MM MIN= I1 -C71M 7 " v p 1

osekeyvord-azrg.list*
/* the arglment list vith binding for free vats */

The os.keyword.argiist is expressed in the following form:

/r

keyvord-arg-expression,

keyword-arg-expression

Because the arguments, consisting by keyword-args of keyword.argilist is not fixed, to simulate

the same functionality in Ada may be complicated and inefficient.

4.4 Summary

Performance tests were performed for two kinds of areas using the Ada/ObjectStore and

the functions of ObjectStore C library. A simple data structure was implemented to measure the

performance. The result shows that there is not much difference when comparing the two languages

that interface with ObjectStore; the difference still depends on the languages own properties. Some

problems were encountered in the interfacing limitation that exists between the two language. Some

problems were related to inadequacies in ObjectStore documentation. These difficulties affect the

effort of implementing Ada/ObjectStore functions.

4-8

___ ___' __ ,/, .. . ,.

V. Conclusions and Recommendations

5.1 Overview

This chapter summarizes the activities in Ada accessing the ObjectStore database manage-

ment system. Most basic and collection functions of the ObjectStore were implemented in several

packages written in Ada, called Ada/ObjectStore. The functionality of Ada/ObjectStore are ana-

lyzed. Some advantages and disadvantage are discussed in the conclusions. Finally, recommenda-

tions are presented for future research to complete the interface.

5.2 Summary of Research

In the activities of this thesis, the ObjectStore functions were first familiarized. Secondly,

parallel data types in Verdix Ada and in ObjectStore were examined. Finally, the initial pro-

totype Ada/ObjectStore created by Object Design, Inc., was extended by using functions in the

ObjectStore C library.

The packages of Ada/ObjectStore are implemented in a corresponding way to the functions in

the ObjectStore C library. Most functions in the ObjectStore C library can be directly accessed from

Ada without any change, but some of them require an intermediate level to handle incompatible

types. However, the limitation of the interface implemented from Ada to C still strictly depends on

the both languages' properties. For example, C provides procedure variables and shift operators,

but Ada does not. C provides simple bitwise binary logical opcrators, but standard Ada does__

neither. Verdix Ada provides a bitwise function in a package, but it is implementation-defined and

its binary operations are limited by Ada's syntax can not be expressed as simply as C does.

To compare the performance of Ada/ObjectStore with C/ObjectStore, several test programs

were written in Ada and in C. Timing routines were instrumented in the code to measure the time

required to access the ObjectStore commands called from Ada and C. The test programs designed

were based on testing database functionality.

5.3 Concluuio=8

The objectives of this thesis were to implement an interface that has functional completeness.

Moreover, the performance of Ada/ObjectStore should not be much different than C/ObjectStore.

Some problems arose and these problems may affect functional completeness. The following dis-

cussion points out the advantages and disadvantages of this interface.

5-1

//

5.3.1 Data Persistence. The objective of data persistence is achieved in the interface. As SL~.9

described in Chapter 2, Ada does not support data persistence. However, ObjectStore, a DBMS

using a C/C++ library interface, provides the ability to handle persistent data. Ada/ObjectStore

accesses the database, v. hich is managed by the ObjectStore, in exactly the same way as the

C/ObjectStore does; the subprogram in the programming language can handle persistent and

transient data without difference. All persistent data are mauaged by ObjectStore, which provides

data management abilities.

Data persistence gives Ada programmers great benefits. First, they do not need to write

program I/O statements. Second, they do not need to write a lot of statements for mapping

values between transient and persistent data. Third, because program sizes are decreased, software

productivity and maintainability are increased.

5.3.2 Reliability, Maintenance, and Efficiency. The Ada reference manual (1) points out

"Ada was designed with three overriding concerns: program reliability and maintenance, program-

ming as a human activity, and efficiency".

Ada is a strongly typed language. This is based on the design goal "program reliability and

maintenance"(1). In order to achieve the reliability of the interface, certain rules must apply to

ensure type safety that are described in section 3.3.2. For example, all variables need to be explicitly

declared and their type specified. The compilers can then check to see that operations on these

variables are compatible with the properties of their type. Because variables are safely manipulated

in Ada, program reliability is maintained.

Ada is proud of the standard coding format and this is acknowledged by all who have ever

seen the Ada program. In contrast, C/C++ features ease of writing rather than ease of reading.

The data persistence, which allows programming in clarity and simplicity, increases the advantages

of the maintenance of the Ada programs.

To achieve efficiency, Ada was constructed and carefully examined in the light of present

implementation techniques. Any proposed construct whose implementation was unclear or that

required excessive machine resources was rejected (1). This can be demonstrated from Table 4.4 in

which the CPU time of Ada is faster than that of C. However, in order to add the ability of data

persistence, which is provided by a database, some trade offs in efficiency must be faced. But the

efficiency in Ada is not much worse than in C when they access ObjectStore.

5.3.3 Data Abstraction. Ada is not truly an OOPL, but the Ada contains most OOPL con-

cepts, namely the encapsulation (package), information hiding (private types and package bodies),

5-2

and concurrent processing (task). In the interface, any type declared in Ada can be implemented

with a corresponding base type in C. The Ada programmer has almost no limit to model the

real world objects using Ada's data abstraction. Information hiding is achieved via private types.

Because data type is needed to be persistent in QojectStore, the data type defined in Ada must

be converted to an os.typespec before it can accompany its object stored to and retrieved from

ObjectStore. The pragma INTERFACE statement for accessing os.typespec is allowed at the place

after the data type are fully defined, and, if a private data type is defined, the pragma INTErFACE

must appear in the same package specification after the type is fully declared.

5.4 Recommendations for Future Research

This thesis extended the prototype of the Ada/Objectbtore, extending its functional complete-

ness. But the goal was not completely achieved. Most functions of collection in the ObjectStore

C library can be accessed by the Ada now, but still a lot of works newd to be done. These are the

transparent interface to Ada programmers, exception handling, and version manrgement.

5.4.1 Transparency. Ada/Objec'Store is not completely transparent to Ada program-

mers. In or\'er to generate a parallel data structure in the ObjectStore a manual schema must be

generated; a C macro facility is currently provided. Moreover, an INTERFACE call must be put in the

main procedure before calling any function that is associated with os-typespec. The query facility

of Ada/ObjectStore is another example. The query string, for example "strcmp(name,"MLke") =-

0)" for querying a string type or "age == 35" for querying a scalar type, is still the C language's

syntax, "strcmp" and "==" in this example. To achieve the transparency, some intermediate

subprogram needs to be created and act as preprocessor or translator.

5.4.2 Exception Handling, Both Ada and the ObjectStore C library provide abilities

for handling exceptione. The exception facility is very important for dealing with !rrors or other

exceptional situations during program execution. An exception can be raised by a rai statement

or operations that propagate the exception. When an exception arises, control can ýe transferred

to a user-provided exception handler. The interface of declaring exceptions is nct completely

implemented.

5.4.3 Version Management. Version management is very important in the area of

computer-aided design applications today. These applications need to increasingly support co-

operative work by a number of engineers on the same design. Ada/ObjectStore does not yet

5-3

provide version management facilities. That means Ada/ObjectStore is not curTently good in CAD

applications or other applications that need data checked out for extended periods of time.

5.4.4 Variant Records. Ada contains most of the concepts of the object oriented phi-

losophy as described in 5.3.3. These features make Ada very close to an OOPL. However, the

only major object oriented concepts not supported by Ada are dynamic binding and inheritance

(15). Rumbaugh (19) and Leopold (15) pointed out that using variant records, Ada can have the

ability of single inheritance. A variant r~cord is a record structure and contains a discrin.inant that

distinguishes the alternate forms of the record. C does not provide. variant records in the si me way.

However, the union type in C can perform the same capability in Ada. Therefore, the ability of

variant records should be maintained in this interface.

5.5 Summary

Although Ada/ObjectStore is not completely implemented, the results that what have been

developed are satisfactory. The performance of Ada/ObjectStore does not differ much with respect

to C ObjectStore, but the enhancement of abilities to manipulate persistent data is a great advan-

tage for Ada. Many problems remain. Some of them are the completeness of functionality, and

some are limitations of the languages. Ada has been acknowledged as a good language in maintain-

ability. Binding to the OODBMS gives Ada great potential in the development and maintenance

of complex, data intensive, engineering applications.

5-4

S/f

...

Appendix A. Raw Performance Test Results

Test Program: helo.ost.a (C library interface)

User CPU Elapsed I Page Faults 1 Disk Blocks 1
Command Time Time Time I with I/O w/o 1/0 In Out]
Run Once 0.030 0.360 0.786 0 213 0 0

0.040 0.370 0.768 0 214 0 0
0.040 0.290 0.728 0 214 0 0
0.030 0.380 0.816 0 213 0 0
0.040 0.320 0.800 0 227 0 0
0.010 0.350 0.767 0 214 0 0

Run 100 0.700 1.820 11.936 0 1005 0 0
Times 0.580 1.860 13o940 0 1005 0 0

0.700 1.970 14.480 0 1005 0 0
0.660 1.830 13.652 0 1017 0 0
0.710 1.790 13.764 0 1006 0 0
0.730 1.670 13.892 0 1006 0 0

Test Program: hello-ost.a (C++ library interface)

]fUser CPU Elapsed I Page Faults Mk13 Blocs
Command Time Time Time with I/O1Wo/O 1 In I OutI

Run Once 0.040 0.210 0.631 0 221 0 0
0.020 0.180 0.585 0 209 0 0
0.060 0.250 0.776 0 209 0 0
0.040 0.190 0.523 0 209 0 0
0.050 0.190 0.475 0 209 0 0

11 0.050 0.!50 0.482 0 209 0 0

Run 100 0.700 1.650 11.893 0 1001 0 0
Times 0.640 1.710 13.207 0 1001 0 0

0.730 1.680 13.508 0 1001 0 0
0.730 1.680 13.500 0 1013 0 0
0.590 1.830 13.505 0 1001 0 0
0.670 1.730 14.037 0 . 1001 0 1 0

Test Program: hello-ost.c

____fUser CPU Elapsed Page Fault Disk Block
Command Time Time Time with 1/0 1w/o1/0 InK Out

"Run Once 0.040 0.130 0.439 0 142 0 0
0.030 0.110 0.313 0 142 0 0
0.030 0.140 0.289 0 142 0 0
0.060 0.100 0.298 0 142 0 0
0.040 0.070 0.331 0 142 0 0

11 0.030 0.100 0.319 0 142 0 0

Run 100 0.710 1.390 11.416 0 950 0 0
Times 0.580 1.620 13.762 0 934 0 0

0.480 1.660 13.826 0 934 0 0
0.6W0 1.670 14.624 0 881 0 0
0.630 1.480 12.356 0 934 0 0

11 0.660 1.530 11.884 0 947 0 0

A-1

Test Program: adaobj.a

UsrCPU Elapsed Page Fauls Disk Blocksi
Command , Time Time Time I with1/0 Iw/oI/O 1 InI Out l
Initialize 1.270 0.290 8.104 0 291 0 0
(10,000 1.230 0.350 9.144 0 284 0 0
Objects 1.270 0.350 5.733 0 291 0 0
inserted) 1.170 0.190 3.695 0 291 0 0

1.200 0.260 6.560 0 291 0 0
1.150 0.160 6.845 0 292 0 0
1.440 0.490 6.086 0 293 0 0
1.130 0.480 5.846 0 291 0 0

Open & 0.060 0.090 0.241 0 60 0 0
Close 0.100 0.060 0.246 0 60 0 0

0.060 0.090 0.308 0 60 0 0
0.070 0.080 0.425 0 60 0 0
0.080 0.090 0.581 0 60 0 0
0.090 0.050 0.770 0 60 0 0
0.080 0.050 0.277 0 60 0 0
0.070 0.050 0.258 0 60 0 0

Lookup/ 0.020 0.080 0.092 0 134 0 0
Retrieve 0.020 0.070 0.095 0 134 0 0

0.030 0.060 0.097 0 134 0 0
0.020 0.070 0.100 0 134 0 0
0.040 0.050 0.095 0 134 0 0

1 0.010 0.080 0.094 0 134 0 0
Sequential 4.150 32.730 185.071 0 266 0 0
Scan (With 3.940 29.450 184.750 0 268 0 0
Output 4.270 29.570 185.649 0 265 0 0
to Screen) 4.220 29.490 190.724 0 266 0 0 A

4.530 29.700 187.444 0 265 0 0
S 4.090 30.830 157.928 0 265 0 0

Sequential 0.040 0.140 0.180 0 265 0 0
Scan (Without 0.070 0.200 0.264 0 265 0 0
Output 0.040 0.140 0.180 0 265 0 0
to Screen) 0.010 0.170 0.184 0 265 0 0

0.060 0.120. 0.181 0 265 0 0
0.050 0.140 0.191 0 265 0 0
0.040 0.140 0.185 0 265 0 0

10.030 0.150 0.184 0 265 0 0

A-2

Test Program: adaobj.c

__________}Iser CPU Elapsed PaeFut isk Blocks
Command Time Time Time with I/O w/o I/O [n Out
Initialize 0.960 0.270 4.880 0 319 0 0
(10,000 0.980 0.350 4.518 0 319 0 0
Objects 0.980 0.380 5.783 0 319 0 0
inserted) 0.970 0.230 4.344 0 319 0 0

0.950 0.260 5.102 0 319 0 0
0.980 0.220 4.331 0 319 0 0
0.970 0.680 4.846 0 319 0 0
0.940 0.250 4.280 0 319 0 0

Open & 0.040 0.130 0.263 0 60 0 0
Close 0.060 0.060 0.276 0 60 0 0

0.040 0.160 0.271 0 60 0 0
0.060 0.160 0.266 0 60 0 0
0.070 0.130 0.282 0 60 0 0
0.070 0.070 0.256 0 60 0 0
0.070 0.120 0.274 0 60 0 0
0.060 0.120 0.265 0 60 0 0

Lookup/ 0.000 0.090 0.092 0 134 0 0
Retrieve 0.010 0.080 0.095 0 134 0 0

0.010 0.090 0.097 0 134 0 0
0.000 0.090 0.100 0 134 0 0
0.020 0.070 0.095 0 134 0 0
0.010 0.080 0.093 0 134 0 0
0.030 0.070 0.105 0 134 0 0
0.020 0.090 0.102 0 134 0 0

Sequential 0.620 14.520 162.831 0 265 0 0
Scan (With 0.550 13.850 151.141 0 269 0 0
Output 0.720 13.260 170.305 0 268 0 0
to Screen) 0.640 16.480 148.934 0 268 0 0

0.550 14.280 149.505 0 268 0 0
0.750 13.300 109.313 0 268 0 0
0.750 17.070 113.976 0 268 0 0
0.550 13.850 151.141 0 269 0 0

Sequential 0.030 0.140 0.174 0 267 0 0
Scan (Without 0.020 0.200 0.218 0 266 0 0
Output 0.050 0.160 0.214 0 265 0 0
to Screen) 0.040 0.160 0.203 0 265 0 0

0.010 0.190 0.200 0 265 0 0
0.020 0.200 0.215 0 265 0 0
0.030 0.180 0.205 0 265 0 0
0.030 0.170 0.195 0 265 0 0

A-3

Test Program: adacol.a

User CPU Elapsed T Page Faults Disk Blocks
Command lime Time Time with I/O J 1/oIO In Out
"Cmitialze 2.750 0.240 6.101 0 347 0 0

(19,000 2.810 0.160 6.107 0 347 0 0
Objects 2.810 0.290 6.698 0 347 0 0
inserted) 2.720 0.350 6.484 0 347 0 0

2.790 0.270 6.580 0 347 0 0
2.880 0.270 6.564 0 347 0 0
2.690 0.220 8.436 0 347 0 0
2.720 0.230 6.401 0 347 0 0

Open & 0.070 0.080 0.368 0 60 0 0
Close 0.070 0.030 0.344 0 60 0 0

0.070 0.070 0.307 0 60 0 0
0.080 0.050 0.264 0 60 0 0
0.060 0.080 0.263 0 60 0 0
0.090 0.060 0.253 0 60 0 0
0.070 0.060 0.252 0 60 0 0
0.100 0.050 0.262 0 60 0 0

Lookup/ 0.240 0.210 0.450 0 286 0 0
Retrieve 0.300 0.190 0.483 0 286 0 0

0.320 0.150 0.463 0 286 0 0
0.300 0.200 0.493 0 286 0 0
0.230 0.260 0.490 0 286 0 0
0.270 0.200 0.476 0 286 0 0

Sequential 4.550 29.380 193.678 0 300 0 0
Scan (With 4.870 30.730 196.4e3 0 300 0 0
Output 4.950 30.930 196.693 0 300 0 0
to Screen) 4.460 30.910 172.602 0 298 0 0

4.650 30.13(195.N1 j 300 0 0
1 3.640 31.670 196.176 0 301 0 0

Sequential 0.120 0.030 0.148 0 47 0 0
Scan (Without 0.120 0.050 0.179 0 47 0 0
Output 0.110 0.040 0.150 0 34 0 0
to Screen) 0.120 0.020 0.141 0 34 0 0

0.120 0.040 0.152 0 34 0 0
0.100 0.050 0.145 0 34 0 .0
0.100 0.030 0.138 0 34 0 0
0.110 0.030 0.140 0 34 0 0

A-4 -

Test Program: adacol.c

User CPU Elapsed Page Faults Disk Block
Command Time Time Time with 1/0 I ut
Initialize 2.770 0.740 7.295 0 360 0 0
(10,000 2.590 0.390 8.026 0 360 0 0
Objects 2.650 0.420 7.769 0 360 0 0
inserted) 2.560 0.400 6.554 0 360 0 0

2.580 0.330 6.748 0 360 0 0
2.650 0.400 8.062 0 360 0 0
2.700 0.420 7.218 0 360 0 0
2.560 0.250 8.036 0 360 0 0

Open & 0.080 0.160 0.313 0 60 0 0
Close 0.060 0.150 0.266 0 60 0 0

0.080 0.110 0.263 0 60 0 0
0.030 0.190 0.288 0 60 0 0
0.070 0.160 0.280 0 60 0 0
0.070 0.130 0.272 0 dO 0 0
0.090 0.100 0.303 0 60 0 0
0.080 0.160 0.297 0 60 0 0

Lookup/ 0.300 0.150 0.450 0 280 0 0
Retrieve 0.250 0.200 0.446 0 286 0 0

0.210 0.240 0.453 0 286 0 0
0.300 0.150 0.445 0 286 0 0
0.280 0.170 0.450 0 286 0 0
0.260 0.210 0.464 0 286 0 0
0.280 0.170 0.449 0 286 0 0

1 0.250 0.200 0.451 0 286 0 0
Sequential 0.910 11.650 125.425 0 299 0 0
Scan (With 1.110 11.670 125.996 0 299 0 0
Output 1.020 14.970 126.669 0 301 0 0
to Screen) 1.120 11.910 127.711 0 299 0 0

0.900 13.020 130.031 0 300 0 0
0.940 12.860 129.460 0 299 0 0
1.160 14.910 130.299 0 299 0 0
1.120 15.450 129.907 0 300 0 0

Sequential 0.110 0.010 0.127 0 46 0 0
Scan (Without 0.100 0.040 0.135 0 54 0 0
Output 0.130 0.010 0.140 0 34 0 0
to Screen) 0.110 0.020 0.128 0 34 0 0

0.100 0.010 0.116 0 34 0 0
0.100 0.030 0.125 0 34 0 0
0.100 0.050 0.149 0 46 0 0
0.100 0.040 0.145 0 34 0 0

A-5

Test Program: purobj.a
Co dCPU _ Flapsed Page Fults Disk Blocks

Command Time Time Time with 1/0 1 w/o I/0 Gn O-Zu-t7

Initialize 0.260 0.150 0.408 0 0 0 0
(10,030 0.300 0.110 0.410 0 0 0 0
Objects 0.280 0.140 0.419 0 0 0 0
inserted) 0.270 0.140 0.417 0 0 0 0

0.230 0.180 0.417 0 0 0 0
0.260 0.160 0.424 0 0 0 0

Lookup & 0.010 0.010 0.013 0 0 0 0
Retrieve 0.010 0.000 0.015 0 0 0 0

0.000 0.010 0.011 0 0 0 0
0.010 0.000 0.011 0 0 0 0
0.010 0.000 0.012 C 0 0 0

1 0.000 0.010 0.011 0 0 0 0
Sequential 3.730 37.324 337.607 0 296 0 0
Scan (With 4.190 27.853 314.580 0 296 0 0
Output 4.330 27.003 426.015 0 296 0 0
to Screen) 3.460 48.485 355.470 0 295 0 0

5.061 32.873 33R.379 0 295 0 0
1 4.830 32.823 240.044 0 295 0 0

Sequential 0.010 0.060 0.071 0 294 0 0
Scan (Without 0.020 0.020 0.042 0 294 0 0
Output 0.020 0.040 0.059 0 294 0 0
to Screen) 0.010 0.030 0.043 0 294 0 0

0.020 0.020 0.042 0 294 0 0
0.010 0.030 0.043 0 294 0 0

A-6

_ -- :Ii:

Test Program: purobj.c

User CPU Elapsed r Page Faults ZDisk Blocks
Command Time Time Time e -h ' [-j707 IoO In Out

Initialize 0.210 0.200 0.405 0 0 0 0
(10,000 0.200 0.210 0.408 0 0 0 0
Objects 0.210 0.2C0 0.412 0 0 0 0
inserted) 0.180 0.2.,0 0.408 0 0 0 0

0.190 0.230 0.418 0 0 0 0
10.180 0.'440 0.421 0 0 0 0

Lookup 0.010 0.300 0.010 0 0 0 0
Retrieve 6.000 0.010 0.010 0 0 0 0

0.010 0.000 0.011 0 0 0 0
0.000 0.010 0.010 .0 (0 0 0
0.010 0.000 0.011 0 0 0 0
0.000 0.010 0.011 0 0 0 0

Sequential 1.420 8.681 126.503 0 306 0 0
Scan (With 1. 110 9.171 109.603 0 306 0 0
Output 1.5'J 8.541 107.530 0 306 0 0
to Screen) 1.410 9.261 162.788 0 306 0 0

1.610 9.131 144.604 0 306 0 0
1.270 10.451 198.931 0 306 0 0

Sequential 0.010 0.040 0.050 0 295 0 0
Scan (Without 0.020 0.040 0.057 0 295 0 0
Output 0.020 0.020 0.047 0 295 0 0
to Screen) 0.020 0.030 0.047 0 295 0 0

0.020 0.030 0.048 0 295 0 0
11 0.000 0.070 0.071 0 295 0 0

A-7

Appendix B. Test Prognems

B-i

B.1 Test Program: ad4obj.mk (oar adaobj~a)

include $(OS-.ROOTDIR)/etc/ost ,re.lib.mk
LDLIB3 =-lon -losc -loscol
LIB-.PATH = /tmp...mt/home/cub2/lchou/dowork/ostilec
OS..COMPILATION-SCHEKA-DB-.PITH = /lchou/test/acnote.cadb
OS-.APPLICATION-SCEEM-DB-PITE = /lchou/ter'../acnot . asdb
EZCUTABLE = adaobj
OBJECTS - o3-echema.o adaobj.o statia.o Commandftats.o
SCBEKA-.SOURCE = adaobj.cc
CPPFLAGS = -gi -I..
SCEE14A - schema-.adaobj

adaobj: *(OBJECTS)
ajuake -L .. STTIS-ADA -f utatio-.ada.a
&.make -L .. adaobj -f adaobj.a -

my a.out adaobj
*(OS-.RDOTDIR) /lib/patch adaobj

Commandftata .0: Commandft ats. c
cc $(CPPFLIGS) $(CFLAGS) -c Cominandftats.c

statis~o: statin.c
cc $(CPPFLAGS) $(CFLIGS) -c atatis.c

clean..obj:
oarm -f $(OS-.COMPILATION..SC EENA..DD..PATE)
osra -f $(OS-APPLICATION-SCEMDA-.DB-.PATN)
rm -f V(UCUTAELE) SCOBJECTS) $(SCHEMA)

include .. /ada-nev uk

X-2

B.2 Test Program: adaobj.a

with OS-TYPES; use OS-TYPES;
with OSTORE; use aSTORE;
with OSTO0RE..GE1MICS;
with TEXT_1O; use TEXT..IO;
with LANGUAGE; use LANGUAGE;
with STATIS..ADA;

procedure ADAOBJ is
pragma LINK-.WITEC"-Bstatic oz-achema.o . ./libosada.a adaobj.o statis.o

CommandStats .o -L/usr/local/objectttore/sun4/lib -los -losc");
subtype NOTE-.STRING is STRINGC1. .20);
type LINTK-.NOTE;
type LINK..NGTE..PTR is access LINK-.NOTE;
type LINK-.NOTE is
record
priority: INTEGER;
nAme :NOTESTRINW";
not* : string(l. .80);

next link-.note-.ptr;
end record;

package INT-IO is new integer-.io(INTEGER);
use INT..IO;

subtype CHOICE-.TYPE is integer range 0 .. 5;
package CEOICE-10I is new integer-.io(CHOICE-.TYPE);

function c..link-.note..typespec return OS.TYPESPEC;
pragma INTERFACE(C, c-link..nota..typeopec);
pragma INTERPACE..NAME~c..lizak.not...typespec,

C..SUBP..PREFIX k "c-link-Aote-typespec"l);
package PERS..IOTE is new OSTORE..GENERICS(L.INK..NOTE, LINK..NOTE-.PTR,

c-.link-.note-.typespec);

ROOT :DATABASE-.ROOT;
DB : DATABASE;
T1 TRANSACTION;
N-IN : INTEGER;
MYONOICE : (.1OICE-.TTPE;

procedure STRCPY(NAME :out string;
NOTE-.NANE :in string) is

LEN : nat~ural :a NOTE-N.PIAELENGTN;
begin

VAME(1.. LEN) :*NOTE-NAME~l. .LEN);
end STRCPY;

B-3

/ ~//

function DATABASERETRIEVE(NUMER integer;
HEAD LINKNOTEPTR) return LINKNOTE-PTR is

TEMP : LINKNOTE.PTR;
begin

TEMP :- HEAD;
while (NUMBER /z TEMP.PRIORITY) and then (TEMP /w NULL)

loop
TEMP :- TEMP.NEXT;

end loop;
return TEMP;

end DATABASERETRIEVI:;

function INSERT(READ LINKNOTEPTR;
N LINK.NOTEPTR) return LINKNOTE.PTR is

begin

N.NEXT := HEAD;
return N;
end INSERT;

procedure DISPLAYNOTE(N LINKNOTEPTR) is
begin

put (N. PRIORITY);
put-line(" " h N.NAME);
put-line(N.NOTE);
now-line;

end DISPLAY-NOTE;

procedure TRAVERSE(HEAD LINK.NOTEPTR;
10 integer) is

TEMP : LINK.NOTEPTR;
begin

TEMP := HEAD;
ihile TEMP /- nill loop

if 10 /- 0 then
DISPLAYNOTE(TEMP);

end if;
TEMP :a TEMP.NEXT;

end loop;
end TRAVERSE;

procedure DATA.SCAN is
HEAD :LINKNOTEPT•q;

begin

D: DATABASE.OPEN("/lchou/test/abnote.db", FALSE, 8#664#);
T: T.RANSACTION-BEGIN;

ROOT :-DATABISEROOT-FIND("ahead", DB) ;
READ :.PERSNOTE.DATABASEROOTGET-VALUE(ROOT) ;

X4

-- start time
STATIS..ADA.CGMKANDSTITS Ci);
TRAVERSE (HEAD,i1);
stop time
STlTIS-.ADA.COMMANDSTATS(0o);
TRANSACTION-COMMIT (TX);

DATABISE-CLOSE(DB);
and DATA-.SCAN;

procedure DATA-.SCAN-NIO is
H EAD LINK-.NOTE..PTR;
begin

DE: DITADASE..OPENC"/lchou/test/abnote.db"', FALSE, 8#664*);
TX :TRANSACTION-.BEGIN;

ROOT DATABASE..ROOT.FIND("ahead". DB);
READ =PERS..NOTE.DATABASE..ROOT..GET2JALUE(ROOT);

-- start time
STATISJ.DA .COMMANDSTATS(l);
TRAVERSE CHEAD,0);

-- stop time
STATIS-ADA.CGHKANDSTATS (0);
TRLNSACTIONLCOMMIT (TX);

DATABASE-.CLOSE(DB);
end DATA..SCAN-NIO;

PROCEDURE DATA-.RETRIEVE is
IMPUT..NUMBER integer;
BASIC-.NOTE,
READ L MK.NOTE-.PTR;
begin

put..line("Retrive a record, the priority is 5000"1);
INPUT-.NUMBDER :- 5000;
DB :DATADASE-.OPENC"/lchou/teist/abnote db"', FALSE, 806640);
TI : TRANSACTION-.BEGIN;

ROOT :*DATABASE-.ROOT..FIND("lahead", DD);
HEAD :*PERS-.NOTE.DATABASE..ROOT..GET..VALUE(ROOT);

-- start time
STATIS-ADA.COMMAIIDSTATS (1);

BASIC-.NOTE := DATABASE..RETRI EVE(NPUT-.NUMiBER, HEAD);
DISPLAY-NOTE(BASIC-.NOTE);

s- top time
STATIS-.ADA.COMMANDSTATS (0);
TRLNSACTIONLCOMMIT(TX);

DATABASE-.CLOSE(DB);
end data..retrieve;

procedure DATABASI:OPEN-CLOSE is
HEAD LINK j(OTE..PTR;

B-5

'COUNT integer;

begin
COUNT :1;

-- start time
STATIS-IDA. COHMANDSTATS (1);
-- repeat opening and closing a database 10 times

while count <- 10 loop
DD DATABASE..OPEN("/lchoultest/abnote.db"', FALSE, 8#664#);
TX : TRANSACTION-.BEGIN;

ROOT :*DATABASE-.ROOT-FIND("ahead", DE);
HEAD :u~ PERS-.NOTE.DATABASE-.ROOT-G.ET-.VALUE(ROOT);

TRANSACTION-.COMMIT(T);
DATABASE-.CLOSE(DB);
COUNT :- COUNT + 1;
end loop;
s- top time
STATIS..ADA.COMMANDSTATS CO);

end DATABASE-.OPEN-CLOSE;

procedure INITIAL-.DB is
BAS IC..NOTE,
HEAD LINK..NOTE..PTE;
COUN TER integer :=1;
begin

DH := DATABASE-.OPEN("/lchou/test/abnote.db"', FALSE, 8#664#);
-- start time
STATIS-.ADA .CO19MANDSTATS (1);
TZ :u TRANSACTION-.BEGIN;

ROOT := DATABASE-.ROOT-.FIND ("ahead", DB);
if invalid(ROOT) then

ROOT 'a DATABASE-.CTIEATE-.ROOT(DB, "ahead");
HEAD :v PERS..NOTE .DATABASE..ROOTGET-. ýALUE(ROOT);,
for COUNTER ini1 .. 10000 loop

BASIC-.NOTE :- PERS-.NOTE .PEP.SISTENT-.NEWCDB);
case (COUNTER mod 10) is
when 0 ->

BASIC-.NOTE.PRIORITY :- counter
STRCPY(BASIC-.NOTE.NAME ,"Danile");
STRCPYfBASIC_.NOTE.NOTE ,"you need meet your friend tomorrow");

when 1Ia
BASIC-.NOTE.PRIORITY :- counter
STRCPY(BASIC-.NOTE.NAME ,"Susan");
STRCPYCBASIC-NOTE.NOTE ,"you need meet Course commitee at 9:00"1);

when 2 -

BASZC..NOTE.PRIORITY := counter
STRCPY(BASIC..NOTE.NAME n"Lill);

B-6

STRCPY(BISIC-JOTE.NOTE ,"Enjoy the silent night in Lab"); /
when 3 =>

BASIC-.NOTE.PRIORITY :=counter
STRCPY(B&SIC_.NOTE.NIME ,,Charsn);
STRCPY(BASIC..NOTE.NOTE ,"You may meet me at 11:00"1);

when 4 m>
BASIC-.NOTE.PRIORITT :- counter
STRCPY(BASIC..NOTE .NAME ,"Mike");
STRCPYCBASIC..NOTE.NOTE ,"We have an appointment with Principle");

when 5 m

BASIC-NOTE.PRIaRITY := counter
STRCPY(BASIC-NOTE.NAME ,"Coan-);
STRCPY(BASIC..NOTE.NOTE "W found a book you lost");

when 6 =>
BASIC-NOTE.PRIORITY := counter
STRCPY(BISIC..NOTE.NAME ."Nancy");
STRC?Y(BASIC-.NOTE.NOTE .-Study Chapter 10 of OS");

when 7 =>
BASIC-.NOTE.PRIORITY :a counter
STRCPY(BISIC-.NOTE.NIME n"patriC",);
STRCPY(BASIC-.NOTE.NOTE ,"Please collect class addresses.");

when 8 =>
BASIC..NOTE.P.RIORITY :- counter
STRCPY(BISIC..NOTE.NIME ,"Jenny");
STRCPY(BISIC_.NOTE.NOTE ,"Happy New Year");

when 9=>
BASIC..NOTE .PRIORIT :a counter

.STRCPY(BASIC-.NOTE.NAIIE ,"Amy");
STMCPY(2LSIC..NOT.NOTE ,"Merry Christmas");

when others => null;
end case;
IED :- INSERT(HEAD, BASIC-.NOTE);

end loop;
PZBS..NOTE .DATAB SE..ROOT-.SET..VALUE(ROOT, BEAD);

put..lino("DATABASE abnoet.db already exist , asrn it !1!");
end if;
TRANSACTION..COMMIT(TX);
DATABASE..CLOSE(DD);

-- stop time
STATIS-ADA .COMANDSTATS (0);

end INITIAL..DB;

B.-7

begin -- NOTE
INITADAINTERFACE;
loop

loop
begin
put.line("** TESTING MENU **");
put.line(" 0. INITIAL DATABASE ABNOTE.DB");
put-line(" 1. TESTING THE OPENING(CLOSING) DATABASE");
put.line(" 2. TESTING THE LOOKUP AND RETRIEVE");
put.line(" 3. TESTING THE SEQUENTIAL SCANING");
put.line(" 4. TESTING THE SEQUENTIAL SCANING (WITHOUT OUTPUT)");
put-line(" 5. BYE !1");
PUT("INPUT -> ");
choice-io .get (MYCHOICE);
text-io, skip-line ;

exit;
exception

when data-error I constraint-error ->

text.io.skip.line;
textio.put.line("Your choice must be between 0 and 5");.
text-io .new.line;

end;
end loop;

-- do different tasks from here

case MYCHOICE is
when 0 =>

INITIALDB;
when I =>

DATABASECPENCLOSE;
when 2 =>

DATA-RETRIEVE;
when 3 =>

DATASCAN;
when 4 =>

DATA.SCANNIO;
when 5 a>

exit;
when others > null;

end case;
end loop;

end ADAOBJ;

B-8

B.3 Test Program: adacol.mk (for adacol.a.)

include $(OS..ROOTDIR)/etc/ostore .1ib.mk
LDLIBS a-los -losc -loscol
LIB..PATH = /tmp-.mztfhome/cub2/lchou/dowork/osfiloc
OS-COMPILATION-SCEEMA..DBPATH a /lchou/test/acnote . cad
OS-.APPLICATION-SCHEML-DB-.PATE a /lchou/test/acnote .asdb

EXCUTABLE - adacol
OBJECTS - .os-.schema.o adacol.o statiz.o CommandStats.o
SCEEM -~SOURCE aadacol.cc
CPPFLAGS -gz -I..
SCHEMA schema-.adacol

adacol: *(OEJECTS)
a~make -L .. STATIS..ADA -f statio-.ada.a
a.make -L .. adacol -f adacol.a
my a.out adacol
* (OS..ROOTDIR) /libfpatch adacul

Commandftats .o: CommandStats. c
cc $(CPPFLAGS) S(CFLAGS) -c CommandState.c

statiu.o: .ta~tis.c
cc $(CPPFLAGS) $(CFLAGS) -c statis.c

clean..col:
oarm -f $(OS-.COMPILATION-.SCMEKA..DB-.PATh)
oarm -f $(OS-APPLICATION-SCHEMA..DB-.PATH)
ra -f $CEXCUTABLE) $(OBJECTS) $(SCHEMA

include . ./ada..uav.mk

B.4 Test Program: adacoL.a

with OS-.TYPES; use OS..TYPES;
with OSTORE; use OSTORE;
with OSTORE-.GENERICS;
with OS-.COLLECTION-.PKG;
with OS-.CURSDR-.PKG;
with TEXT-..I; use TEIT..IO;
with LANGUAGE; usa LANGUAGE;
with STATIS..ADA;

procedure ADACOL is
pragma LINK-WITH("I-Bstatic .os-.schema.o ../libosada.a adacol.o statis.o

CommandStats.o -L/uer/local/objectstore/sun4/lib -los -losc -loscol");
subtype NOTE-STRING is STRING(1. .20);
type NOTE_.COL;
type NOTE..COL..PTR is access NOTE..COL;
type NOTE-~COL is
record
priority: INTEGER;
name NOTE-.STRING;
note :string(1. .80);

next note-.col-ptr;
end record;

package INT-.I0 is new integer-io(INTEGER);
use DINT_10;

subtype CHOICE-TYPE is integer range 0 .. 5;
package CHOICE-.I0 is new integer-.io(CNOICE-.TYPE);

function c..note-.col-.typespec return OS..TYPESPEC;
pragma INTEEFACE(C, c..note-.col-.typeopec);
pragma INTERFACE-NAME(c-.note..col..typespec,

C-.SUIP-.PRFMIX & "Ic-.note..col-typespec");
package PERS-.NOTE is new OSTORE-.GENERICS CNOTE-.COL, NOTE..COL-PTR,

c..not*..col-typespec);

on- scollection's type
function c-.os..colloction..typeopec return OS..Tp ESPEC;
pragma INTERFACE(CC c-.os..collection-.typespec);
pragma INTERFCE-.NLME(c-.os-collection..typespec,

C..StJEP.PPEPIX & "c..os..collection..typsspec"l);

package COLL-.NOTES is new OSTOREGENERICS (U...TYP! a> NOTE-COL,
U..TYPEPTR => NOTE-COL..PTR,

GET..USTYPESPEC => c..cs..collection-.typespec);

*&1

package OS..COLL is new OS-COLLECTION-PKG(U-TYPE => NOTE..COL,
U-.TYPEPTR -> NOTE..COLI'TR,

GET..OS..TYPESPEC ->c-os-collection-typespec);

packags OS..CtRSORS is now OS..CURSOR..PKG (U-TYPE => NOTE-.COL.
U-TYPEPTR m> NOTE..COL..PTR);

ROOT :DATABISE_.ROOT;
DB :DATABASE;
T1 TRANSACTION;
N-IN :INTEGER;
MYCHOICE :CHOICE-TYPE;

procedure STRCPY(NIME out string;
NOTE-.NAME in string) is

LEN :natural := NOTE-NAEI4ELENGTB;
begin

NAME(i.. LEN) :a NOTE..NAIE(1. .LEN);
end STRCPY;

procedure DISPLAY-.NOTE(N NOTE-.COL..PTR) is
begin

put (N .PRIORITY);

put-line(" "&N.NAME);

put..line(N.NOTE);
now-.line;

end DISPLAYNOTE;

procedure DATA-.SCAN is
-- -HEAD OS_.COLLECTION;

P :NOTE..COL..PTR;
CUR :OS-CURSOR;

begin
DB :-DATABASE-,OPENi('/lchou/test/acnote.db". FALSE, 8#664#);
TX : TRANSACTION..BEGIN;

ROOT :a DATA ASE-.ROCT..FIh'DQahead", DB);
HEAD := COLLkNOTES.DATABASE-.ROOT-.GET-VALUE(RLJOT);

-- start tine
STATIS-.ADA.COMX AND STATS (1;

-- iteration
CUR :aS...CURSORS.OS-.CURSOR..CREATE(BEA);
P :- NOTE..COL-.PTR(OS-.CURSORS.OS-.CURSOR-.FIRST (CUR));
while (OS-.CURSORS.OS-.CURSOR-MORE(CUR)) loop

DISPLAY-.NOTE(P;
P:.OS..CURSORS.OS-.CURSOR-.NEIT(CUR);

and loop;
OS-.CUBSI3RS O...CURSOR-.DELETE(CUR);

s- top time
STATIS-.ADA.COMMAnDSTATS Ca);
TRLNSkCTION-SOM!MIT(TX);

DATABASE-.CLOSE(DB);
end DATA-SCAN;

procedure DATA-SCkN-NIO is
HEAD OS-COLLECTION;
P : NOTE-.COL-PTR;
CUR :OS-.CURSOR;

begin
DE : DATABASE-OPEN("/lchou/test/acnote.db", FALSE, 88664*);
TI : TRkNSACTION-BEGIN;

ROOT :~DATABASE-.ROOT..FINDC"ahead", DE);
HEAD :mCOLL-.NOTES.DATABASE-ROOT..GET..VALLJE(ROOT);

s- tart time
STATIS..ADA .COMMWIDSTATS(1;

-- iteration
CUR :- OS.CUTISOES.OS. CURSOR-.CflriATE(HEAD);
P :m NOTE-.COL-.PTR(OS..CURSORS.OS-.cURSOR-.FIRST(CUR));
while (OS_.CURSORS.O5..CURSOR-M.ORECCUR)) loop

P :=OS-.CURSORS.OS..cURSOR-.NEXTCCUR);
end loop;
OS-.CURSORS.OS-...CRSO..DELETE(CUR);

-- stop time
STATIS-ADA.CDMHAI1DSTATS CO);
TRAJSACTION..COMMITCTI);
DATAMAE-.CLOSE(DB);

end DATA..SCAN-NIO;

PROCEDURE DATA-R.ETRIEVE is
INPUT-.STRING : STRINGCI .. 130) :=(others
QUERIED-NOTE,
READ :OS..COLLECTION;
P :NOTE_.COL_.PTR;
CUR : OS-.CURSOR;

begin
Put..lizeQ'Retrive a record, the priority ia 5000"1);
DD DATABASE-.OPEN("/lchou/teet/acnote.db", FALSE, 8*6648);
TZ TRARSACTION...EGIN;

RWOOT DATABASE-ROOT.FIND("ahead", DB);
HEAD :.COLL-.NOTES .DATABASE..ROOT-AET-ALUE(ROOT);

-- start time
STATIS-.ADA .COMMA1IDSTATS(1);

B-12

STRCPY(INPUT-.STRING, "priority == 000");
QUERIED-1OTE :=S...COLL.OS-COLLECTION.QUERY(HEAD, "note-col*"I

,INPUT-STRING ,DB);
-- iteration

CUR :- OS-.CURSORs.os-.CURSOR-.CREATE(QUERIED-.NOTE);
P := NOTE..COL..PTR(OS-.CURSORs.OS-cURSOW,.FIRSTCCUR));
while (OSCURSORs.OSCUD.SOR-ORE(CUR)) loop

DISPLAY-.NOTECP);
P: OS-.CURSORS.OS-.CURSOR..NEXT(CUR);

end loop;
OS-.CURSORS.OS-.cURSOR-.DE.LETECCUR);

s- top time
STATIS..ADA.CONMMNSTITS(d);
TRARSACTION..COMMIT(TX);

DATABLSE-.CLOSECDB),
end data..retrieve;

procedure DATABASE-.OPEN..CLOSE is
REID :OS-.COLLECTION;
COUNT :integer;

begin
COUNT 1 ;

-- start time
STATIS..ADA.COMMANDSTATS(l);
-- repeat opening and closing a database 10 times

while count (M 10 loop
DB UDATABASE-.OPENj("/lch toltst/acnote.db", FALSE, Sf6648);
TX : TRANSACTION-BDEGIN;

ROOT :DATABASE-.ROOT-.FfllD("ahead". DB);
HEAD :- COLL-NOTES .DATABASE-.ROOT-.GET-.VALUE(ROOT);

TR~dA(S;fION-.COMMIT(TX);
DATABASE-.CLOSE(DB);
COUNT :~COUNT + 1;
sad loop;
s- top time
STATIS-.ADA.COHMAJDSTATS(O);

end DATABASE-.OPEN..CLOSE-

procedure INITIAL..DD is
BASIC-.NOTE :NOTE-.COL-PTR;
HEAD :OS-.COLI.ECTION;
COUN TER :integer :- 1;
begin

DB :- DATABALSE-.OPEN("/lchou/test/acntot.db", FALSE, 88664#);
-- start tine

STATIS-.ADA.CONIWIDSTATS(1);
TX :a TRANSACTION..BEGIN;

B-13

ROOT: DATABASE..ROOT..YIND("aboad", DB);
if invalid(ROOT) then

ROOT :uDATABASE-.CREATE-.ROOT(DB, "ahead");
HEAD :~OS-.COLL.OS..COLLECTION-.CREATE(DB,

"."maintain-cursors I maintain-order", 10);
for COUNTER in 1 .. 10000 loop

BASIC-.NOTE := PERS..NOTE.PERSISTENT-.NEW(DB);
case (COUNTER nod 10) in
when 0 =

BASIC-.NCTE.PRIORITY :a counter
STRCPY(BASIC-.NOTE.NAh'E ,"Danile");
STRCPY(BASIC..NOTE.NOTE ,"you need meet your friend tomorrow");

when 1 M>
'BASIC..NOTE.PRIORITY :~counter
STRCPY(BASIC-.NOTEi. NAME ,"Susan");
STRCPYCBASIC.NOTE,.NOTE ,"you nee6 zueet Course commitee at 9:00"1);

when 2 -

BASIC-NOTE.PRIORITY :- counter
STRCPY(BASIC-.NOTE.NANE ,"Li");
STRCPY(BASIC-.NOTE !NOTE ,"Enjoy the silent night in Lab");

when 3 =>
BASIC-NOTE.PRbORItY :- co-dnter
STRCPY(BASIC..NOTENAME ,"Chars");
STRCPYCDASIC_.NOTEMNTE ."You may meet me at 11:00"1);

when 4 ~
BASIC-.NOTE.PRIORITY :-counter
STRCPY(B&SIC-.NOTE,INAME ,"Nike");
STRCPY(BASIC-.NOTE.NOTE ,"We have an appointment with principle");

when 5 u

BASIC-.NOTE. PRIORITY := counter
STRCPY(BASIC-.NOTE.NAME ,"Coan");
STRCPY(BASIC-.NOTE.NOTE ,"We found a book you lost");

when 6 *

DASIC-.NOTE.PRIORITY :- counter
STRCPY(BASIC-NOTE .NAME ,"Nmncil");
STRCPY(BASIC-.NOTE.NOTE ,"Study Chapter 10 of OS");

when 7 =>
BASIC-.NOTE.PRIORITY :- counter
STRCPY(BASIC-.NOTE.NAI(E ,"Patric");
STRCPY(BASIC..NOTE.NOTE V"lease collect class addresses.");

when a u

BASIC-N.OTE.PRIORITY :- counter
STRCPY(BASIC-.NOTE.NAME ."Jenny-);

&-14

STRCPY(BASIC-.NOTE.NOTE ,"Happy Nov Year");

when 9 =>
SASIC-NOTE.PRIORITY := counter
STRCPY(BASIC..NOTE.NMIE ,"Amy");
STRCPY(BASIC..NOTE.NOTE ,"Marry Christmas"');

when others => null;
end case;
OS..COLL .OS-.COLLECTION-INSERT(HEAD, BASIC-.NOTE);

end loop;
COLL..NOTES .DATABASE-ROT..SET..VSLUEC(ROOT, HEAD);
else
put..line("'DATABASE mcnote.db already exist !,oarm it ";
end if;
TRANSACTION-.COMMIT(TI);
DATABASE-.CLOSEI\DB);

-- stop time
STATIS-ADA .COHMAIIDSTATS (0);

end INITIAL..DD;

begin .-- NOTE
INIT-.ADA-INTERFACE;
OS-.COLL .OS-.COLLECTION-.INITIALIZE;

loop
loop
begin
put..line("** TESTING MENU el)
put..line(" 0. INITIAL DATABASE ACNOTE.DB");
put-.line(" 1. TESTING THE OPENING(CLOSING) DATABASE");
put..line(" 2. TESTING THE LOOKUP AND RETRIEVE");
put-..iie(" 3. TESTING THE SEQUENTIAL SCARING");
put..liae (" 4. TESTING THE SEQUENTIAL SCARING (WITHOUT OUTPUT)");
put..line(" S. BYE III-);
PUT("INPUT -> ");

choice..io .get (MYCHO ICE);
text..io .skip..line;

exit;
exception

when data-.error I constraint..erroi. u

text..io. skip..line;
text-.io.put-.line("Yolur choice must be between 0 and 5"1);

en ; text.io .nev..line;

* end loop;

-- do different tasks from here

case HYCHOICE is

when 0 W>

INITIAL-.DB;
wheis I =>

DITABISE..OPEN-CLOSE;
when 2 =>

DA-.A.RE1'RIEVE;
when 3 =>

DATA-.SCAN;
when 4 u

.DATA..SCAILNIO;

when 5 C>
exit;

when others >null;

end case;
end loop;

end ADICOL;

B-1.6

t I -I

B.5 Test Program adaobj mk (for adaobj.c)j

include $(OS.JtDOTDIR)/*tc/ostor. .lib.mk
OS..COHPILATION..SCREMA-DB..PATE= /$CUSER)/test/bnoto .cmdb
OS..APPLICATION-.SCHEHA-.DB-.PATH= /$(USER)/test/buote .asdb
LDLIBS u-los -losc
SOURCES u adaobj.c CommandStats.c skm~.adad.cc ct.,bnote.c
OBJECTS adaobj.o ConnandStats.o skm-adao.o ct..bnote.o
EUECUTABLES uadaobj ct-.buote
CPPFLAGS = -I*(OS-.RDO7hIR)/include
CFLAGS a *

CC 0 cc
LIB..PATH a -L/usr/local/obj ectstore/sun4/ bib

all: $(EXECUTABLES)4

eadaobj: adaobj .o CoiiandStats .o schema-.standin..Adao
$(OS-.PRELINK) .osn-schema.cc N

*(OS..COMPILATION-.SCEEMA.DB-.PATE) * (OS.APPLICATION-.SCHEEMA-DB-.PATE)\
adaobj.o $CLDLIBS) 1

05CC -c .on.schimna.cc
t(LINK.c) -o adaobj -Bstatic adaobj.o\

CommandStats.o .oxs.chema.o $(LDLIBS)
$(OS-.POSTLINK) adaobj

ct..bnote: ct..bnote .o schema-.standin-Adao
$(OS-.PRELINC) .os-.schema.cc\

*(OS..COMPILATION-.SCHEKA-.DS..PATH) *(OS-4PPLICATION-SCBEMA...DBATH)\

OSCC -c .os-.schema.cc
*(IIK.c) -o ct..bnote ct..bnote.o .os..schema.0 $(LDLIDS)
*(OS..POSTLINK) ct-.bnote

adaobj.o: adaobj.c i r
$(CC) $(CPPFLAGS) I(CFLAGS) -c adaobj.c

CoimazdStats .0: CoaamndStats .c
$(CC) $(CPPFLAGS) $(CFLAGS) -c Co-mandStats.c

schema-.standin-Adao: skm..adao. cc
OSCC $(CPPFLAGS) -bat ch-schema *(OS..COMPILATION-.SCMEXA..DB.PATH) skm..adao. cc
touch scheua..standin..Adao

clean:
oerm -f *(OS-.cOMPILATION..SCHEMA..D..PATH)
os= -f S(OS4APPLICATION..SCHEXA.DB-.PATH)
ra -f S(EXECUTABLES) $(OBJECTS) schema-.standin..Adao,

depend: .depend-.B

.dependjB:

osmakedep .depend-B3 $(CPPFLAGS) -files $(SOURCES)

include .dopend-B

B-1

V

-/

B3-18

B.6 Test Program: adaobj c

/* file :adaobj.c program -main file
ObjectStore C library

implemented by Li Chou, in Jan 1993.

#include <stdio.h>
#include <ostore/ostore .h>
.#include (strings .h>
*include <sya/tiMe .h>
#include <sys/rebource .h>

#include "adaobj .h"

extern FILE *bazic..file;
void initial..dbO;
void database-.open-.closeO;
void data..ratrieveO;
void data..scano;
void data..scan..nioO;
struct link...ote *datatbase-retrieveO);
void display..not*O;
void traverse();

void exito;

Is global timing variables for CommandStats -- Jacobs 18/09/91 .
static struct tineval elapsed;
static struct rusage exec;

database *db;
database-root *root;

/* allocat os..typ..pec *
os-type spec *note..pad..type;

main()

char choose;

start..objectatoreO);
note..pad-.typo a alloc-.typespec("izzk.note",0);

Is-mai" loop -

drive manual
-- choose input by user 5

while (1){
printf("se* Testing Menu **\n");
printf(" 0. Initial database bnote.db\n");
printf(" 1. Testing the opening(closing) databaae\n");
printf(" 2. Testing the lookup and retrieve\n");
printf(" 3. Testing the sequential scaziing\n");

B-19

R, 77' 7-1' 'M ý'" ! j1

printf C" 4. Testing the sequential scaning (without output to screen)\n");
printf("l 5. Bye !I\n");
printf("Input -> 11);

while (scanf("%c' , &choose) -I){
it (choose <= '5' M choose >= '0')

break;

it (choose '5'16) exit(1);

switch (choose){
case '0'

initial-0d C;
break;

case''
database..open-close 0;
break;

case '2'
data-.retrieveO;
break;

case '3'
data-scanO);
break;

case '4'
data-.scan..nioo;
break;

void databas...open..close()

struct link-note *head;
int count;

count J ;
/* Start time commandtat *
CommandftatsC1, stdout, kelapsed, &exec);

- ~/* repeat opening and closing a database 10 times *
while (count <= 10){
db a database..lookup-.open("/lchou/test/bnot..db", 0, 0684);
OS..BEGIN-.TXN(txl ,0,transaction-.update) { *
root a database-.root-.find("ahead". db);
head - database-.root-.get..value(root, note-.pad-typ*);
IOS-.END-.TXN(txl);

databaae-.close(db);
++count;

I. Stop time co-Anndatat 5

Cc-anxd tats(0, stdout, &elapsed, kexec);

IM

IF WOrm o IP OI MMI

void data-retriev* C

mnt input-..number;
struct link..noto *basic-note, *head;

printf("Retrivo a record, the priority is 6000\n");
/s if (scan2("%d", kinput..number) - 1) e

input-.number a 5000;
db a database-lookup..open("/lchou/test/bnote.db", 0, 0664);
OS-BEGIN..TZN(txl ,0,transaction-.update){

root - database..root-.find("lahead". db);
head a database..root-get-.value(root, note-.pad-~type);

/* Start time commandstat *
CommandStats(i, stdout, &elapsed, kezec);
basic..note a dattbase..retrieve~input-nimber, head);

display..note (baa ic..note);
/0 Stop time commandstat *

CommandStats(0, stdout, &elapsed, &exec);
} S..EIID..I(tzl);

database..closa(db);

void data...can()
atruct link-.not* *head;

db a databaso-.lookup-.open("/lchou/teat/bnote.db", 0, 0664);
OS..DEOIN..TZN(txl, 0,transaction-.update){

root w database-.root-.find(Ilahead". db);
head - database..root..get.valus(root, note..pad..type);
/. Start time camutandstat e
ComandStats(l, stdout, kelapsed, &exec);
traverse (head, 1);
/0 Stop time comnandstat e
Command~tats(0, utdout, Weapsed, &exec);

}OS...UD.TXN(txi);
database..close(db);

void data..can-nio()
atruct link..noto *head;
void traverse();

db a database..lookup..open("/lchou/test/bnote.db',, 0, 0664);
OS-BEGIN..TIN(tzi ,O~transactio-upudate){

root a database..root..find("ahead", db);
head a database..root-get-.value(root, noce..pad..typs);
A. Start time commandstat e
Cowsandftata(i, stdout, &elapsed, &exec);
traverae(head,0);

B-21

/e Stop time commandstat 1/

CommandStats(O, stdout, &elapsed, &exec);
}OS_END_TA-N(txl) ;

databrseclose(db) ;}

/e retrieve a note ./
struct link-note *database-retrieve(numb, link.htad)
int numb;
etruct link_note *linkhead;
{
struct link-note *temp;
temp a link-head;

while ((numb != temp -> priority) U* (temp := NULL)){
temp - temp-> next; --- _

}
return temp;}

/1 Print out to the specified stream this note */
void display.note (n)
struct link.note on;
{

printf("priority (%d) name %s \n". n->priority. n->name);
printf("note ex\n". n -> note);

}

/e Insert a node s /
atruct link-note einsert(p, q)
strm.ct link_note *p;
struct link-note *q;
{

q -> next- p;
return q;

}

/I Sequencial ecaning /
void traverbo (anote, io)
NOTE anote;
int io;
{
NOTE tamp;

teap n anot.;
while (temp .' NULL) {
if o (1 I) {

dioplay.note(tomp);

B-22

}

temp -temp -> next;
}

}

void initial.dbO
{

/* global timing variables for CommandStats -- Jacobs 18/09/91 0/

static struct timeval elapsed;
static struct rusage exec;
database *db;
database.root *root;
struct link-note *head, *basic-note;
int counter;

d& w database-lookup.open("/lchou/test/bnote.db". 0, 0664);
/* Start time co-mandstat o/

CommandState(l, stdout, &elapsed, &exec);
,OS._BEGINTXN(txi, O,transactionmupdate) {

root a database.roottind("ahead", db);
if (Oroot) {

root - database-create.root(db, "ahead");
}

else
{

printf("The database exist 1! *arm it first 1!1\n");
exit 0;

}

head n database.root.getvalue(root, note.padtype);
for (counter - 1; counter <a 10000; ++counter){

basic.note a (struct link-noteO) objectstore.alloc(note-pad.type, 1, db);
switch (counter - ((Ut)(counter/10)) * 10) {

case 0
basic.note -> priority a counter
strcpy(basic._ote -> name ,"Danile");
strcpy(basic.note -> note ,"you need meet your friend tomorrow");
break;

case 1
basic.note -> ,riority a counter
strcpy(basic to -> name ,"Susan");
strcpy(basic.n te -> note ,"you need meet Course commitee at 9:00");
break;

case 2:
basic-note -> p iority = counter
strcpy(basicno e -> name ,"Li");
mtrcpy(basic-note -> note ,"Enjoy the silent night in Lab");
break;

cae 3
basic-note -> priority a counter

B-23

77-, -- r7 77R ," -1 -M7 -

strcpy(basic-note -. name ,"Chars");
strcpy(baeic-note -> uote ,"You may meet me at 11:00");
break;

case 4
basic-note -> priority = counter
str:py(bauic.note -> name "Mike");
strcpy(basic.note -> note ,"We have an appointment with principle");
break;

case 5
basic-note -> priority a courter
strcpy(basic.note -> name "Coan");
strcpy(basic.note -> note ,"We found a book you lost");
break;

case 6
basic-note -> priority v counter
strcpy(basic-note -> name ,"Nancy");
strcpy(basic.note -> note ,"Study Chapter 10 o OS");
break;

case 7
basic-note -> priority = counter
strcpy(basic-note -> name ,"Patric");
strcpy(basic-note -> note ,"Please collect class addresses.");
break;

case 8 :
basic-note -> priority v counter
strcpy(basic-note -> name ,"Jenny");
strcpy(basic-note -> note ,"Happy New Year2');
break;

case 9
basic..note -> priority a counter ;
strcpy(basic-note -> name ,"Amy") ;
strcpy(basic.note -n ote ,"Merry Christmas");
break;

head - insert(head, besic-note);

database-root-set-value(root, head, note.pad.type);
) OS-ENtD_'TIN(tzt) ;

databaseoclose(db);
/e Stop time com-andstat C/

CommandStats(O, stdout, &elapsed, kexec);

B-24

-1 "URRI lw

B.7 Test Program: adacoL~mk (for adacolxe)

include $(OS-.ROOTDIR)/etc/ostore. lib .mk
OS-.CONPILATIONLSCHEIL-DO-P&TE= 1*(USER)/test/cnote . cidb
OS..APPLICITION..SCHEMA..DB-.PATE= ISUSEYO/tost/cuote . aasd
LDLIBS *-los -losc -loucol
SOURCES * adacol.c CozmandStats.c skm-adac.cc ct~cnote.c
OBJECTS * adacol.o CommandStatu.o ukm-adac.o ct..entoe.o
EXECUTABLES - adacol ct..cnote
CPPFLAGS - -IMS(ROSOTDI1O/include
CFLAGS a u

CC a cc
LIB..PITE - -L/usr/local/objectstore/suzi4/.Iib

ali: S(EXECUTABLES)

a~dacol: adacol.o Co~andStats.o sch~ma-.stand...i...dacol
*(OS-PRELINK) .os-schema.cc\

$(OS-.COMPILATION-SCIEML')LPATE) $(0S-APPLICATION..SCBENA-.DB-.PATE)\
adacal.o $(LDLIBS)

OSCC -c .os-.schema.cc
*(LINK.c) -o adacol -Datatic adacol.o CommAzdStats.o os-schema.o\

$(WDLIBS)
* (OS-.POSTLINX) adacol

ct-cnote: ct-.cnote .o scheina-standin..Adacol
$(OS..PRELINC) .on-schema.cc\

$(OS..CONPILATION-.SCEEX.DL-PATE) S (OS-.APPLICATION-.SCEMA.DB-PATE)\
ct..cnote .o $(LDLIBS)

05CC -c .os-schema.cc
$(LINK.c) -o ct-.cnote et..cnote.o .onsachema.o $(LDLIBS)
S(OS..POSTLINK) ct-.cnote

ct-cnote.o: ct..cnote.c
$00c S(CPPFLAGS) $(CFI.GS) -c ct..cnote.c

adacol.a: indacol.c
$00C $(CPPFL&GS) $(CFLAGS) -c edacol.c'

CommandSt ate .0: Comioandftats. c
$(CC) $(CPPFLACS) W(FLAGO) -c CozunandStats.c

schema-a..sandin-Adacol: skm..adac .cc

OSCC $(CPPFLAGS) -batch-.schema S(OS-.COMPILATION..SCEMDBA-D.PITH)\
s km-adac.cc

touch schema..standln..Adacol

clean:
surm -f * (OS- OMPILATZON.SCh'A-.DB..PkTH)
asrm -f * (0S.APPLICATIlJLSCHXLNADB-)ATiH)
a-f *(EZECUTABLES) $(OBJECTS) scehmia.standin..Adacol

B-25 .

depend: .depend-C

.depondC:
ommakedep .dopend-C $(CPPFLAGS) -files $(SOURCES)

include depend-C

B\26

B.8 Test Program: adacol.c

I. file adacol.c program -main file

ObjectStor4 C library - collection functions

implemented by Li Chou, in Jan 1993.

*include <sludio.h>
#include <ostore/ostore .h>
*include <ont ore/coill.h>
#include <stringa .h)
*include <sys/time.'.4
#include <sys/resource .h>

#include "adacol .h"

extern FILE *basic-.file;
void initial..CoO1;
void database..open-~clos 0;
void data..retrieve0;
void data..scano;
void data..scan..nio0;
void display..note0;

void exito;

/* global timing variables for CommandStats -- Jacob~s 18/09/91 .
static atruct timeval elapsed;
stat4 c struct rusage exec;
database *db;
database..root *root;
os-typespec snot...type, *os..coll-type;

maino

char choose;

start..objectstore0;
os~collection~initializo 0;
/* allocat os..typespec c

note-type - alloc..typespoc("note..col".0);
os..coll-.type a alloc..typespec("os..collection",0);
/c-main loop -

drive manual
-- choose input by user *

while (1){
printf("*c Testing Menu cc\nn);
printf(" 0. Initial database cnote.db\n");
printf(" 1. Testing the opening(closing) databaae\n");

B-27

printf(" 2. Testing the lookup and retrieve\n");
printf C" 3. Testing the sequential scaning\n");
printf C" 4. Testing the sequential scaning (without output to scraeen)n");
printf(" 5. Bye M!n");
printf("Input -> 11);
while (scant("%c" , fchoose) -=I){

if (choose <= '5' kk choose >a '0')
break;

if (choose -- 161) exit(1);

switch (choose){
case '0'

initial-colO);
break;

case 'I'
database..open-closeO;
break;

case '2'
data-.retrieveo;
break;

case'3
data-.scanO;
break;

case 1141

data-s.ean-.nioo;
break;

void database..open..close C

on-.collection *bead;
mnt count;

count a 1;
/* Star~t time conmandstat e
Couaand~tats(1, atdout, &elapsed, &exec);
/* repeat opening and closing a database 10 times e
while (count <- 10) {
db a database...ookup-.open("/lchoulteot/cnot..db", 0, 0664);
0S..DEGIN-.TXN(tzl ,O,transaction-.update) (

root = databaze-.root-.find("ahea~d", db);
head - (os..collection*) database-.root-.get-value(root, os..coll..type);

3OS-..MD.TZN(txl);
database..close(db);
44couat;

/0 Stop time commandstat *

B-28

CommandStats(0, stdcout, kelapsid, &exec);

vniA Aliata-retrieve C

oas-collection *head, *querie&..note;
ea-cursor *cur;
striict note-.coJ. ep;
char *input..atring;

printf("Retrive a record, the priority is 5300\n");
/* if (scanf("ld". &iziput-number) -= 1) .

db a database-.lookup-.open("I/Ichou/test/cnoto.db"', 0, 0664);
OS-.BEGIN-.TZN(txl ,0,transaction-update){

root a database-.root..findCI'ahead", db);
head a (on-,collectione) databas...root..get..value(root, ou..coll-.type);

/* Start time commandatat o
CommazidStats(1. atdout, keiapsed, &exec);
strcpy(input-s.tring,"priority 5 000");
queried..uote a on-.collection-.qaery(head, "note..col*", input-.string,

db,0 .0);
cur a os-.curaor-create(queried-not., 0);

for (p a(utruct note..col*) os..curaor-.first(cur); ou-curaor..jore(cur);
p a (atruct n~ote..col*) on-.cursor-.next(cur))
display-.note(p)

os-.cursor..dolate (cur);
/* Stop time commandstat 0

ComandStats(0, stdout. kelapsed, &exec);

database-close(db);.

void data....cau()

oa..collection *he ad;
oa..cursor *cur;
struct uote-col *p;

db m database..lookap..op~m("/l'chou/test/cnote.db", 0, 0664);
OS-.BEGIN..TZN~txl ,0,transaction-.update) (

root n database..root-find("ahead". db);
head a (oa..collection*) databaseo-root-got-.value~r, ox-coll-.type);
/* Stant time commandetat 0

CoinandStats(1, stdout, Weapsed, kezec);
cur a oo-.curnor-create(head, 0);

for (p - (struct note-col.0o) cucrnor-.first(cur); oa..curnor...mr*(cur);
p a (sttruc nt e-te oWe es..cursor..next(cur))

&J29

os..cursor-.delete (cur);
/* Stop time cominbndstat *
CommandStats(0, stdout, Weapsed, kexec);

}OS-.END-.TIN(txi);
database-close Cdb);

void data-.scam..nio C

os-collection *head;
os..cursor *cur;
struct note-col *p;

dh a databaa...lookup-openC"I/Ichou/test/cnote.db", 0, 0864);
OS..BEGIN..TXN(tnl ,0,tranaaction..update) {

root a database..root-.find(Q'ahead", db);
head a (os...ellection*) database~root-get..value(root, os..coll~type);
/* Start time counmandatat */
CommandState(l, stdout, kelapsed, kexec);
cur a os-.cursor..create(head, 0);
for (p - (struct note..col*) os-curior-first(cur); os-.cursor-more (cur);
p - (struct note~col*) os-.cursor..nent(cur));

os-cursor-delete (cur);
/* Stop time commandstat */
CommandStats(0, stdout, kelapsed, &exec);

} OS.END..TXN(tii);
database-.close(db);

/* Print out to the specified stream this note *
void display-.note (n)
struct note-col en;

printf("priority (%d) name %s \n", n->priority, n->name);
printfC"note %s\n", n -> note);

void initial-col()

struct note-col *head, ebasic-not.;
mnt counter;

db a databaae-lookup..open("/lchou/test/cnote.db", 0, 0664);
/* Start time commandstat */

ComandStat.(i, utdout, kelapsed, &exec);
OS..BEGIN-.TIN(txl, 0,tranzacticn..update) {

root a database..root-find("lahead", db);
if (!root) (

root a database..create..root(db, "ahead");
head - os..collection-create(db,

B-30

on_€ollect ion-maint sin-cur sot s I

o.€collection.maintsain-order,10,0,0);
database.rootset.value(root, heed, os-coll-type);

olse

printf("The dstabase exist 1! oerm it first ! !\n\");
exit C);

)

head a database.root-get.value(root, osacoll-type);
for (counter w 1; counter <a 10000; ++counter){

basic-note w (struct note-col*) objectstore.allcc(note.type, 1, db);
switch (counter - ((int)(countor/10)) * 10) f

case 0
basic-note -> priority a counter
strcpy(basic-note -> name ,"Danile");
strcpy(basic.note -> note ,"you need meet your friend tomorrow");
break;

case 1:
basic-note -> priority a counter
strcpy(basi,:.note -> name ."Susan");
strcpy(basic-noto -> note ,"you need meet Course conmmitee at 9:00");
break;

case 2:
basic.note -> priority a counter
strcpy(basic.note -> name ,"Li");
strcpy(basic.note -> note ,"FnJoy the silent night in Lab");
break;

case 3
basic-note -> priority a counter
strcpy(basic.note - name ,"Chars");
strcpy(basic.note -> note ,"You may meet me at 11:00");
break;

case 4
basic.note -> priority a counter
strcpy(basic.note -> name ,"Mike");
strcpy(basic.note -> note ,"We have an appointment with principle");
break;

case 5
basic.note -> priority - counter
strcpy(basic.note -> name ,"Coan");
strcpy(basic.note -> note ,"'e found . book you lost");
break;

cane 6
basic-note -> priority a counter
strcpy(basic.noto -> name ,"Nancy");

B-31

_ _"_ _._ _ -, (\ -,

strcpy(basic-note -> note *"Study Chapter 10 of 03");
break;

crase 7
basic-note -> priority a counter
strcpy',basic-note -> name ,"Patric");

strcpy(basic.note -> note "Please collect class addresses.");

break;

ca•e 8

basic.note -> priority a counter

strcpy(batic-note -> name ,"Jenny");

strcpy(bastc..note -> note ,"Happy New Year");

break;

case 9
basic-note -> priority - counter

strcpy(basic.note -> name "my");
strcpy(basic.note -> note ,"Merry Christmas");

break;
}

os.collectionminsert(head, basic.note);
}

} OSENDTIN(txl);
databaseclose(db);

/# Stop time commandstat */

ComnandStats(O, stdout, &elapsed, &exec);

B

B-32

B.9 Test Program: purobj.a

-- a pure Ada program which without accessing DBMS
with TEITIO; use TEXTI0;
with STATIS..ADA;

procedure PUROBJ is
prmaa LINKWITH("-Bstatic statis.o CommandStats.o");
subtype NOTE-STRING is STRINIO(..20);
type LIWK.-OTE;
typo LINK.NOTE.PT'R is access LINK.NOTE;
type LIN..NOTE is
record
priority: INTEGER;
name : NOTE.STRING;
note : string(1..80);

next : link-note.ptr;
end record;

package II-IO is new integer.io(INTEQER);
use INT.IO;

subtype CHOICE-TYPE L's integer range 0 .. 6;
package CHOICE.IO is now intogor..io(CNOICETYPE);

AD : LINK.NOTE-PTP;
XIN : INTEGER;
HYCHOICE : CHOICE-TYPE;

procedure STRCPT(NAME out string;
NOTE-NAME : in string) is

LEN : natural :n NOTENAME'LENGTH;
begin

NAMEMI.. LEN) :a NOTE.I4ME(i..LEN);
end STRCPY;

function DATABASE.RETRIEVE(NUMBER : integer;
HEAD : LINK.NOTE.-PTR) return LINK.NOTE.PTR is

TEMP : LINKNOTEPTR;
begin

TEMP :a HEAD;
while (NUMbL.R / TFMP.PRIORITY) and then (TEMP /- NULL)

loop
TEMP :a TENP.NEXT;

end loop;
return TEMP;

end DATABASE.RETRIEVE;

B-33

function INSERT(EAD LINK..NOTEPTR;
N LINIC.NOTE-PTR) return LINXJIOTE.YTR is

begin
U.NEIT

return N,
and INSERT;

rrocedure DISPLALNOTE(N LINK-NMMEYTR) is
begin

put (I.PRIORITY);
put..lineC, a X .1kHZ);
put..line(N.NOTE);
nev..line;

end DISPLAY-NOTE;

procedure TRAVERSECHEAD LINK..NOTE..PTR;
10 integer) in

TEMP :LINK..NOTE..PTR;
begin

TEMP :-s HEAD;
.h~e -7V /- ni~ll loop

if ./-0 then
j)ISPLAY-.NOTE(TEMP);

Paid if ;
TEMP :- TEMP.NEXT;

end loop;
end TRAVERSE;

procedure DATA.-~CAN-.IOCEEAD LINK..NOTE-.PTR) is

begin
-- start tine
STATIS-.ADA.COMMANDSTATS (1);
TRAVERSECHEUD,1);

-- stop time
STATIS-..DA .CMMAIDSTATS (0);

end DATA-.SCAN-10;

procedure DATA..SCAJ(HEAD !LINK-.NOTE..PTR) is

begin
-- start tine
STATISADA .COMMAIJDSTATS Cl);
TRAVERSE(CEADO);
s- top time
STATIS-I.DA .COMMANDSTATS (0);

end DATA-.SCAN;

B-34

PROCEDURE DATA_.RETRIEVE(TEMP LINKNOTEPTR) is
INPUT.NUMBER : integer;
BASIC-NOTE : LINKNOTEPTR;
begin

put-line("Retrive a record, the priority is 5000");
INPUT.NUMBER :,u 6000;

-- start time
STATISJ.DA.COMK ANDSTATS(1);

BASIC-NOTE :- DATABASE_.RETRIMEV(INPUT-NUMBER, TEW);
DISPLAT.NOTE(BASICNOTE);

-- stop time
STATIS..ADA. COM•ANDSTATS(0);

end data-retrieve;

function INITIAL_DB return LINKNOTEPTR in

HEAD,
BASICNOTE : LINKNOTEPTR;
COUN•TER : integer :a 1;
begin

-- start time
STATISADA. COMAIDSTATS(1);

for COUNTER in 1 .. 10000 loop
BASICNOTE :- new LINKNOTE;
case (COUNTER mod 10) is
when 0 W>

BASICNOTE.PRIORITY :* counter
STRCPY(BASIS.NOTE.NAME ,"DaniWe");
STRCPY(BASZCNOTE.NOTE ,"you need meet your friend tomorrow");

when I a>
BASICNOTE.PRIORITY :-counter
STRCPY(BASICNOTE.NAiE ,"Susan");
STRCPY(BASIC.NOTE.NOTE ,"you need meet Course commitee at 9:00");

when 2 a>
BASIC.NOTE.PRIORITY :- counter
STRCPY(BASICNOTE.NAME ,"Li");
STRCPY(BASICNOTE.NOTE ,"Enjoy the silent night in Lab");

when 3 =>
BASICNOTE.PRIORITY :- counter
STRFPY(BASICNOTE. NAME ,"Chars");
STRCPY(BASIC_NOTE.NOTE ,"You may meet we at 11:00"):

when 4 u>
BASICNOTE.PRIORfTY :c counter

B-35

STRCPY(BASICNOTE.NAME ,"Mike");
STRCPY(BASICNOTE.NOTE ,"We have an appointment with principle");

when 6 =>

BASICNOTE.PRIORITY := counter
STRCPY(BASICNOTE.NIME "Coan");
STRCPY(BASICNOTE.NOTE ,"We found a book you lost");

when 6 ->

BASICoNOTE.PRIORITY :- counter
STRCPY(BISICNOTE.NNAME ,"Nancy");
STRCPY(BASICNOTE.NOTE ,"Study Chapter 10 of OS");

when 7 =>
BASIC-NOTE.PRIORITY := counter
STRCPY(BASICNOTE.NAME ,"Patric");
STRCPY(BASICNOTE.NOTE ,"Please collect class addresses.");

when 8 a>
BASICNOTE.PRIORITY := counter
STRCPY(BASICNOTE.NAME ,"Jenny");

STRCPY(BASIC..NOTE.NOTE ,"Happy Nov Year");

when 9 *>

BBAICNOTE.PRIORITY :m counter
STRCPY(BASICNOTE.NAME ,"Amy");
STRCPY(BASICNOTE.NOTE ,"Merry Christmas");

when others => null;
end case;
HEAD := INSERT(HEAD, BASICNOTE);

end loop;
-- stop time

STATISADA. COMMANDSTATS (C);
return HEAD;

end INITIALDB;

begin -- NOTE
loop

loop
begin

:..&tline("ee TESTING MENU We");
put.line(" 0. INITIAL DATABASE; TRANSIENT ONLY");
put.line(" 1. TESTIAG THE LOOKUP AND RETRIEVE");
put.line(" 2. TESTING THE SEQUENTIAL SCANING W I/0 ");
put.line(" 3. TESTING THE SEQUENTIAL SCANING WITHOUT I/O");
put.line(" 4. BYE !");
PUT("INPUT -> ");
choiceoio .get (MYCHOICE);
text.io .skip.line;

exit;

B-36

exception
when dataerror I constrainterror =>

text._io skip.line;
textio.put.line("Your choice must be between 0 am' 5");
text io. nelwlino;

end;
end loop;

-- do different tasks from here

case MYCHOICE is
when 0 a>

HELD :u INITIALDB;
when I >

DATARETrRIJVEMZAD);
when 2 ->

DATASCANIO(HEM);
when 3 a>

DATASCAN(HEAD) ;
when 4 =>

exit;
when others a> null;

end case;
end loop;

end PUROBJ;

B-37

. J--

B.1O Test Program: purobj.c

/* C purobj .c program - main file
A pure C program but perform the same functionality of
adaobj.c except no persistent objects

C/

#include <stdio.h>
#include <strings.h>
*include <sys/time.h>
#include <sys/resource.h>

#include "parobj.h"

extern FILE *basic-file;

NOTE initial-db(;
void data.retrieve();
void data-scan.ioo);
void data.scan);
NOTE database.retrieveO;
void display-note);
void traverse();
void exito;
int is-empty();

/* global timing variables for CommandStats Jacobs 18/09/91 e/
static struct timeval elapsed;
static struct rusage exec;!

main()
{

char choose;
static NOTE head;

head = NULL;
4*-- main loop --

drive manual
-- choose input by user */

while (1) {
printf("** Testing Menu **\n");
printf(" 0. Initial database transient only\n");
printf(" 1. Testing the lookup and retritve\n");
printf(" 2. Testing the sequential scaning i/o\n");
printf(" 3. Testing the sequential scaning without i/o\n");
printf(" 4. Bye !.\n");
printf("Input -> ");
while (scanf("%c" , kchoose) -1) {

if (choose <- '4' Ui choose >- '0')
break;

}
if (choose - '4') exit(l);

B-38

svitch (choose)
case '0'

head uinitial-.db0;

break;
case 'I1

data-.ratrieve (head);
break;

case '2'
data-scmn..io(head);
break;

case '3'
data..scan(hezd);
break;

int is...mpty(temp)
NOTE tamp;

int empty;
if (temp - NULL)
empty a 1;

else
empty - 0;

return empty;

void data..retrieve(temp)
NOTE temp;

int input ..number;
NOTE basic..Aote;

printf("Ratrive a record, the priority in 5000\n");
I. if (scauit("%d". ki'zput-.number) -- 1) *

if (ia..empty(temp))
printf("WaW.n""... LINK LIST IS EMPTY11 f)

input..numb~r n 5000;
/* Start time commandstat C

CommandStats(i, stdout, felapsed, &ezec);
basic-note a database..retrieve (input-.number, tamp);

display-.note(basic-note);
/* Stop time commandstat *

CommandStats(0, stdoult, kelapsed, kezec);

B-39

void data..ecan-.io~tomp)
NOTE tamp;

if (isOmPt7~(tenP))
printf(1'\n~s\n'," ... LINK LIST IS EMPTY ')

else

/0 Start -'line commandstat *
Cniadtats(i, stdout, kelapued, &exec);

tzaverse(temp,1);
IS Stop time co=Andstat e
CommandStatsCO, stdout, kelapsod, kexec);

void data-.scan(temp)
NOTE temp;

if (iu..empty(temp))
printf("\n~a\n"."-... LII!K LIST IS EMPTY ...1)

also

/* Stut time commnndstat e
CoandStatz(1, stdout, keldpaed, &exec);
traverse(tomp,O);
/* Stop time co~mn~dstat S
Coo aan dStats(O, atdout, kelapued, kaxec);

/-w retrieve a note e
NOTE databas...ratrieve(numb, snot.)
int numb;
NCTE anota;

NOTE tamp;

tamp a anots;
while ((umb 1- temp -> priority) & (temp Is NULL))

temnp = tamp-> next;

return tamp;

B-40

/* Print out to the specified stream this note */
void display-note (n)
NOTE n;

r {
printf("priority (0d) name U \n", n->priority, n->name);
printf("note %s\n", n -> note);

}

/* Insert a node s /

NOTE inmert-(p, q)
NOTE p;
NOTE q;

q -> nextu p;
return q;

/* Sequenciul. scaning 5

void traverse(anote,io)
NOTE ¬e;
int io;

NOTE temp;

temp am note;
while (temp I- NULL) {

if (IU :-O) {
display.note(temp);

}
temp - tomp -> next;

}

NOTE iui ialdb()
{

/* g obal timing vuriables for CommandStats -- Jacobs 18/09/91 .1
NOTE head. basuc.note;
mt counter;

hvad .
/* tart time comandstat e/

Comman ats(1, stdout, Uelapsed, oezec);
for (c unter a 1; countor <a 10000; ++counter){

bast not* - (NOTE) malloc(sizeof(struct link-.noto));
sw itch (counter - ((Unt)(counterA/O)) 1 10) {

came 0 :
basic.note -> priority - counter

,+4

strcpfr, aote -> name "Danile');
strcpy(Lsaic-note -> note ,"you need meet your friend tomorrow");
break;

case 1
basic-note -> priority = counter
strcpy(basic-note -> name ,"Susan");
strcpy(basic-note -> note ,"you need meet Course commitee at 9:00");
break;

case 2:
basic-note -> priority - counter
strcpy(basic-note -> name "Li");
strcpy(basic.note - note ,"Enjoy the silent night in Lab");
break;

case 3
basic-note -> priority a counter
strcpy(basic-note -> naMe ,"Chars");
strcpy(basic._note -> note ,"You may meet me at 11:00");
break;

case 4
basic.note -> priority - counter
strcpy(baai:_note -> name "Mike");
strcpy(Lasic-note -> note ,"We have an appointment aith principle");
break;

cabe 5

basic-note -> priority = counter
strcpy(basi-._note - name ,"Coan");
strcpy(basic-note -> note ,"Ve found a book you lost");.

break;
case 6
basic-note -> prio.-ity a counter
strcpy(basic.note -> name ,"Nancy");
strcpy(basic.note -> note ,"Study Mhapter 10 of OS");
break;

case 7:
basic-note -> priority - counter
strcpy(basic..note -> name ,"Patric");
strcpy(basic-note -> note ,"Please coilect class adrfresses.");
break:

case 8
basic-note -> priority z counter
strcpy(basic-note -> name ,"Jenny");
strcpy(basic-note -> note ,"Happy New Year");
break;

case 9
basic-note -> priority = counter
strcpy(besic-note -> name "Amy");
strcpy(basic.note -> note ,"Merry Christmas");
break;

B

B-4

*S4, WflAT 97 ,-, -W4sa~ "W"W 1 077T qq' -,q,,AWj

head *ins~rt(hoad. basic-note);

IC Stop time coommndatat .
CommandStats(O, stdout, Asiapstd. &exec);

return head;

B-43

B.11 2'es Progri~m: hello-ost.mk (for hello-o.tat)

include $(OS..ROOTDIR0/etc/outore.lib.iuk

0S.COMPILATION-CSUEMA-B.PITH - /lchou/hollo .cdb
OS..APPLICATION-SCHIZMA-DB-ATE a /lchou/hollo . adb
SCEK~lA-SOURCE a hello-oa.cc
LDLIBS - -lon -losc
CPPFLAGS - -gx -I..
EXCUTLBLE hellbo-oat
OBJECTS - .ox-schema.o hellbo..ot.o

hello-ost: .os-schema .o
a~mak. -L .. he .'-o-oat -f hello-ost.s.
mv a.out hello-.ost
S(OS..ROOTDIT0lib/patch hello-ost

±iuclude . .Iada.sk

B-44

B.12 Test Program: hello-osta

with OS..TYPES; use OS..TYPES;
with OSTORE; use OSTORE;
with PERSSCALARS;
with STATIS-.ADA;
with TEIT-1O; use TEIT..IO;

procedure hello-.oat is
pragma LINK-.WITE("-Bstatic .os-schema.o . ./libosada .a statis .o CorAndStats .o

-L/usr/local/objectstore/sun4/lib -los -losc");
packtge INT-10O in now integor-.io(INTEGER);

$ us* INT.IO;
-- add check the performa~nce

package time..io is new fixed-.io~duxation);
use Time..Io;
A..Numbor : Integer;
Count : Integer;
The..Choice :Character;

ROOT: DATABASE-.ROOT;
IP: PERS._SCALARS .INTEGER-PTR;

DB: DATABASE;
TI: TRANSACTION;
begin

put(" The numbers loop to perform -)

get(A..number);
-- start time

STATIS-.ADA .COMMAhlDSTATSC1);

INIT..ADA.INTERPACE;
DE :m DATABASE-.OPEN("/lchou/ada.dbl', FALSE, 8#664#);

tor Count in 1 .. A-.numbor loop

TI : TRANSACTION-B.EGIN;
ROOT :a DATABASE..ROOT-FIND(I'countor", DB);
if invalid(ROOT) then
ROOT := DITAEASE..CREATE-RWOT(DB, "counter");
IP := PERS..SCALARS .PERS-INTEGER.PERSISTMNT..NE(DD);
PERS-.SCALAJ.S .iERS..INTEQER.DATABASE-.ROOT-.SET-.VALUE (ROOT, IP);
ord if;
IP : U PERS-.SCALAIIS .PERS..INTEGERI.DATAt ISLE OOT-GET..VALUE(ROOT);
Ma~ll :0 Malel + 1;

put("Prograin run now is
put(ip.all);
put-.line(" times.");
put("Progras run from chis erection is");
put (Count);
put-.line(" times.");
TRANSACTION.CONMIT (T);

end loop;

B-45

s- top time
STATIS..ADA.COMMANDSTATSCO);

put("*** For performing)
put(-n'imber,1);
put-line(" times e**e");
nev..line;
end MELLaO-ST;

B-08

17

B.13 Test Program: hello-ost.mk (for hello..ost.c)

include $(OS..ROOTDIR)/etc/ostore .lib.mk
OS-.COMPILATION.SCHEEMLDB.PATH= /$USER)/hlloc .coimp.schema

OS_.APPLICATION-.SCHEMA.DB-.PATH= 1*USER) /hlloc .app-.schema
- LDLIBS *-los -bosc

SOURCES *hello2at.c CommandStats.c schema.cc
OBJECTS hello2at.o hello2atb.o CommandStatri.o schema.o
EXECUTABLES a hello2at hgllo2atb
CPPFLAOS n -1$ COS.RfODTDIR)/include
CFLAGS a -g
CC * cc
LID..PATH w -L/usr/local/obj ectutore/aun4/lib

all: *(EIECUTABLES)
using static binding#*

hello2at: hello2at .o CommandStats .o schema..standin..D
$(03.PRELINK) .on-schema.cc\

$(OS..COMPILATION.SCEEMA-DB..PATH) $(OS-APPI' ATION-SCEEMA..DD.PATE)\
hello2at .o *(LDLIBS)

OSCC -C .onschema.cc
$(LINK.c) -o hello2at -Bstatic hello2at..o ConnandState.o .oo-.schema.o\

$(WDLIBS)
*(OS-.POSTLIhK) hello2at

hello2at .0: hello2at. c
$(CC) $(CPPFLAGS) *(CFLAGS) -c hello2at.c

ComnandStats .o: CommandStats. c
cc $(CPPFLAGS) *(CFLAGS) -c CommandStats.c

sche=-..tandin..B: schema. cc
OSCC $(CPPFLAGS) -batch..schema W(S..cOMPILATION-.SCEEMA..DB.PATH) schema.cc
touch schema..standin..D

* clean:
osra -f M(S-COMPILATION..SCEEIA..DD.PATH)
ra -f *(EXECUTABLES) SCOBJECTS) schema..standin_.B

depend: .depend-B

.dependBD:
osmakedep .dep~nd-DB $(CPPFLAGS) -files W(OURCES)

include .depondBU

B4

B.14 Test Prognm:. hello..ost.c

#include <stdio.h>
fiaclude <ostore/ostore .h>
*include <svsftime .h>
#include <ays/resource .h>

/* global timing variables for CommandStats -- Jacobs 18/09/91 *
static struct timeval elapsed;
static struct rusage exec;

main()

database *dbi;
database..root *count..root;
int *coufltp, counter, i;
extern double get-.clock()
double start-time, c.alculation-.time;
start..objectstoreO;

primtf(" The numbers loop to perform ->)
if (scanf("%d", fcounter) mu){
/* Start time commazidstat *
ComandStats(l, stdout, Weapsed, kexec);
db1 - database..lookup-.open("/lchou/dbl", 0, 0664);
for (i - 1; 1 <= counter; ++i) (

OS-B.EGIN-.TXR(.tzl ,0transaction-.update){
count-root a datatase..root..fimd("count', dbl);
countp a (imt *)database..root-.get..value(count-.root, 0);

printf ("Program rur. %d times\n", ++*countp);
printf("Run from this execution %d times\n", i);

}OS..END..TXN(txl);

/A Stop time coxmmandstat *
CoinandStats(0, stdout, kelapsed, kexec);

printf(" for performing %d times \n". counter);
.

B-48

- -.-- .ii ~ -~ . - -- - - -.E,

Appendix C. Interface Programs

I

c-

C.1 Interface Program: Makefile

include *COS_.RCOTDIR)!,tc/ostore .lib.mk

SOUR~CES = glue.cc glue-.pti.cc
OBJECTS - glue.o glue..pti.o

* set CC to your C++ compiler command
* unset TFLAGS (+OSTD is an (23CC flag to allow only standard C++)
TFLAGS=

- - cc=OsCc
CPPFLAGS =g

CFLAGS -g
MDEPEND =-I$COS-.ROOTDIR)/include

all: libosada.a ada-.objects

clean:
carm -f *{OS..COMPILATION-.SCHEMA..DB-.PATE}
rm -f *{EXECUTABLES} $(OBJECTS) schema...tandin

glue..: glue.cc
$(CC) $(CPPILAGS) W(FLAGS) -c glue.cc

glue..pti.o: glu...pti.cc
*(CC $(CPPFLAGS) $CTFL.AGS) -c glue-.pti.cc

libosada.a: glue.o glue..pti.o
ar rc libosada.a glue.o glue..pti.o
razilib libosada.a

ada..objects:
a~make OS-.TYPES -f os..types .a. os..typ.b .a
a~make OS-.EXCEPTIONS -f except.a. except-.b.a
amzake OSTORE -f ostore.a ostore-b.a
a~make OSTORE-.GENERICS -f ostore..g.a ostorg-b.a
a~make OS..CfLLECTION-.PKG -f os..coll.a os-.coll..b.a
a~make OS..CURSOR..PKG -f os-.cur.a os..cur..b.a
a~make PERS..SCILARS -f pscalr.a

.depend:
osmakedep .depend $(CDEPENrD) -files $COURCES)

include .depend

C-2

C.2 Interface Program: ositypea.a

"--Definitions for objectstore's portable types

with UNSIGNED-TYPES;
package OSTYPES is

"subtype OSUNSIGNEDINT8 is UNSIGNEDTYPES.UNSIGNEDTINYINTEGER;
subtype OSSIGNEDINT8 is TINY.INTEGER;
Mubtype OS-UNSIGNED-INT16 is UNSIGNED_.TYPES.UNSIGNEDSHORT.INTEGER;
subtype OS.INT16 is SHORT-INTEGER;
subtype OS.UNSIGNED-INT32 is UNSIGNEDTYPES.UNSIGNEDINTEGER;
subtype OS-INT32 is INTEGER;
subtype OSBOOLEIN is INTEGER;
subtype OSUNIZTIMET is UNSIGNED.TYPES.UNSIGNEDINTEGER;
"subtype OSCOMPARERESULT is INTEGER;
subtype OSBITF is UNSIGNED.TYPES.UNSIGNEDNT GER;
type OSTOREOPAQIUE is private;

"type 0S.STRING is nev STRING(1..150);
type OS.COLLECTIONBERAVIOR is (MAINTAINCUR.SORS, ALLOW-DUPLICATES,
SIGNALDUPLICATES, ALLOW-NULLS, KAINTAINORDER);
for OSCOLLECZION.-BEAVIOR'SIZE use 32;

function valid(OBJ: OSTORE-OPAQUE) return BOOLEAN;
function invalid(OBJ: OSTOREOPAQUE) return BOOLEAIN;

private
type OSTOR&OPAQUE is neo INTEGER;

end OSTYPES;

C-3

C.3 Interface Program: oi-typ-b.a

-- Implementation for os types
package body OSTYPES is

function valid(OBJ: OSTO.E-OPAQUE) return BOOLEAN is
begin
return OBJ /- 0;
end valid;
pragma INLINE(valid);

function invalid(OBJ: OSTOREOPAQUE) return BOOLEAN is
begin
return 013 w 0;
end invalid;
pragma INLINE(invalid);

end OS.TYPES;

C4

//
. . ,,- . ; - " i -. . .-- , "7

C•4 Interface Program: ostore.a

-- Basic interface to ObjectStore from the Ada programming language
-- Protot.-pe design and implementation by Dave Rocenberg cf Object
-- De.ign, Inc.

-- Functions are extended and binding in changed to C library interface
-- by Li Chou. Nov, 1992.

with 3YSTEM; use SYSTEM;
with OSTYPES; une OSTYPES;
p-.,;,age OSTORE is

-- Public Types
type STRPTR is access STRING;
type DATABASE is new OSTOREOPAQUE;
type DATABASE-ROOT is new OSTORE.OPAQUE;

-- collections
type OSCOLLECTION is new OSTORE.OPAWUE;
type OSCOLL.REPDSCPR is new OSTORE-._OPAQUE;
type OSCURSOR is neo OSTOREOPAQUE;
type SEGMENT is nev OSTOREOPAQUE;
type OSTYPESPEC is new OSTOREOPAQUE;

-- transactions
type TRANSACTION is new OSTOREOPAQUE;
type CONFIGURATION is new OSTOREOPAqUtE;
type TIUNSACTION.TYPE is (NONE, UPDATE, PEADONLY);
for TRANSACTION.TYPE'SIZE use 32;
for TRANSACTION-TYPE use (NONE -> 0, UPDATE a> 1, PYAD_ONLY a> 2);
type REFERENCE is private;
subtype U.MODE is OS.-INT32 range 0 .. 8#T770;

-- Database Operations
procedure DATABAS&,._CLOSE(DB: DATABASE);

-- Raise ERUDATABASEEXISTS
function DATABASEC•-ATE(PATR: STRING; MODE: U_MODE :* 886640;

OVERWRITE: BOOLEAN : FALSE) return DATABASE;

-- Raise EDR.DATABASENOT_FOUND
function DATABASE_LOOKUPýPATH: STRING; MODE: U.JODE :* 0) return DATABASE;

-- Raise ERRDATABASENOT.FOUND
"function DATABASEOPEN(PATN: STRING; READ.ONLY: BOOLEAN : FALSE;

NODE: U.MODE :- 0) return DATABASE;

-- function DATABASE_.OETTIUNSIENT.DATABASE return DATABASE;

-- function DATABASEOF(LOC: ADDRESS) return DATABASE;

C-5

-- Object3tore apm~rat ions
procedure INIT..ADA..INTERFACE;

procedure START..OBJECTSTORE;

-- function OEJECTSTORE-.IS-.PEP.SISTENT(LOC: ADDRESS) return BOOLEA;

-- procedure OBJECTSTORE..CNMOD(PATH: STRING; MODE: NATURAL);

-- procedure OBJLCTSTORE-.SET-.BUFFER-.SIZE(BYTES: POSITIVE);

-- Transaction Operations
function TRANSACTI0W.,GET-.CtWLR.ENT ret-,xu TRANSACTION;

procedure TRANSACTION-.ABORT(T: TRANSACTION : = TR.ANSACTION-.GET..CURRENT);

function TRANSAUTION-.GET-M.AX-.RETRIES return OS..1NT32;

procedure TRANSACTION-.SET-(AX-.RETRIES (COUNT: NATURAL : - 10);

function TRANSACTION-TOP-.LEVEL(fl: TRANSACTION :=TRANSACTION..GET-.CURRENT)
return BOOLEAN;

function TRANSACTION..GET..TYPE(TZ: TRAN5ICTION :uTRkNSACTION-GET..CURRENT)

retwur TRA.NSACTION-.TYPE;

procedure TRANSACTION-.COMMIT(TZ: TRANSACTION :a TRANSACTION..GET..CURRENT);

procedure TAkNSACTION-ABORT-TOP..LZVEL;

Zunction TRANSICTIflLBEGINCT-.TTPE: TRANSACTION..TYPZ := UPDATE)
return TRANSICTION;

-- transaction..get-.parent is not provided in C library
-- function TRANSACTION-G.ET-.PAIIENT(TX: TRANSACTION :-u TRINSACTION-.GET.CURRENT)

-- return TRANSACTION;

-- Utility functions
functiov D..TO..OSB(V: BOOLEAN) return OS..BOOLEAN;

-- Database Root Operation.a
-- Returns null if root not found!
function DATABASE.RDOOLFIND(NANE: STRING; DB: DATABASE)
return DATABASE-ROOT;

-- Raise m.RRDROT-EUISTS and m...DATABASE..NOT-.FOUND

C-6

function DATABASECREATEROOT(DB: DATABASE; NAME: STRING)
return DATABASE-ROOT;

function DATABASE.ROOT.GETNAME(ROOT: DATABASE.ROOT) return STRING;

function ALLOCTYPESPEC(NAME: STRING) return OSTYPESPEC

private
type REFERENCE is

record
SEGID: OSINT32;
OFFSET: OSINT32;
WORDO: 0SINT32;
WORDI: OSINT32;
WORD2: OS.-INT32;

end record;

end OSTORE;

C-?

.. o

C.5 Interface Program: ostore-b.a

--Body implementation f or a prototype ObjeczStore/Ada interface

--Design and implementation by Dave Rosenberg, Object Design, Inc.

--performed under contract to PRC, Dec-Jan, 1991-92.1

-- Functions are extended and binding is changed to C library iuterface
--by Li Chou. Nov, 1992.

with SYSTEM; use SYSTEM;
with LANGUAGE; use LANGUAGE;
with OSECEP.TrIOS;
with A..Strings;[

package body OSTORE is

-- Utility C string convertion
function c..ada-.to-c (3: SYSTEM .ADDRESS; L: INTEGER) return SYSTEM. ADDRESS;
pragma INTERFACE(C. c-.ada-.to-.c);
pragma INTERFACE-..AhE(c..ada-.to-..c C-.SUBP-PREFIX * "c-ada..to..c");-

-- DATABASE-OPEN
function c-.databas...open(PATE: IDDRESq; OVERWRITE: OS..BOOLEAN;

MODE: U..MODE) return DATABASE;
pragma I1ITERFACE(C, c..datat~ase..open);
pragma INTERFICE-.NAME(c-database-.open,

C-.SUBP-.PREFIX k "data~base..lookup..open");

function DATABASE..OPEN(PATH: STRING; READ-.ONLY: BOOLEAN := FALSE;
MODE: U-.MODE :- 0) return DATABASE is

begin
return c-.database-open(c-.ada..to-.cCPATE(PATH'FIRST) 'ADDRESS,

PATN'LENGTR), B..TO-.OSB(READonLy), MODE);
end DATABASE..OPEN;
pragma INLINE CDATABISE..OPEN);

--DATABASE-.CLOSE
procedure c..database-.close(DB : DATABASE);
pragma INTERFACE(C, c-.database-.clos.);
rragma INTERFACE-NA1E(c-.datibase-.close,

C-.SUBP..PREFIX it "database..close");

procedure DATABASE-.CLOSE(DB : DATABASE) is
begin

.c-.database..close(DE);
end DATABASE-.CLOSE;
pragma INLINE(DATABASE..CLOSE);

-- DITABASE-CREATE
function c-.database-.create(PATN: ADDRESS; MODE: U-MODE;

OVERWRITE: OS-BOOLEAN) return DATABASE;

C-8

pagaINEtRFICE(C. c-database..create);
pragma INTEDYACE-NAME~c-database-create,

C..SUBP..PREFIX & "databaso..creat a");

function DATABASE..CREA7iE(PATE: STRING; NODE: U.MODEZ :a 68#6643;
OVERWRITE: BOOLEAN :- FALSE) return DATABASE is

begin
return c..database..creat.(c-ada..to.c(PATE(PATE'FIRST) 'ADDRESS,

PATE'LENGTH), NODE, B..TO..OS(OVERWRITE.));
end DATABASE..CPEATE;
pr"gn INL!NECDATABASE-.CREATE);

--DATABASE.LOOKUP
function c..databas*_l.ookup(P&-H: ADDRESS; MODE: !LMODE) return DATABASE;
pragma INTERFACE(C, c..database..lookup);
praga INTERFACE-NAME(c..datab' ..lo& isAp,

C-SBUP-PRLFII & "database~lookup");

function DATADASE..LOOKUP(PATH: STRNG; NODE: U-NODE :a 0) return DATABASE is
begin

return c-database-.lookup(c-.ada..to.c (PATHCPATU'FIRST)' ADDRESS ,PATE 'LENGTH).
MODE);

end DATABASE-.LOOKUP;
pragna INLINE(DATABASE..LOOKUP);

-- Initialization
procedure c..init-ada-intertace;
pragma IMTERPACE(C. c~init..ada..interface);
pragma IUitEFACE-NAME(c..init-.ada-nterface,

C..SIhP-PREFII & "c..init..ada..interface");
procedure INIT..ADA.INTERFACE is
begin
c~init-ada~interface;
end XNIT..ADA..INERPACE;
pragna INLIIE(INIT..ADA-INLERPACE);

-- Initialisation
procedure c-.start..objectstore;
pag" XIUTDFACZ(C. c..start..ob:¶ectstore);
papa INTERFACE-NAME (c..start.objectstore,

C..SUBP-PREFII "stezt-obJectutore");
procedure STAJT..OBJECTST RE is
begin
c-..tart..objectatorse:
end STAIT-03MJCTSTORE;
praga INL!IN(START. ODJECTSTORE);

-- Transaction get current

c-g

function c-trannaction-get~current return TRANSACTION;
pr"gm IN1T.RFACE(C, c..-transact ion-~got -current);
praiziia INTE3RYACE-NAME(c-t~ranuaction.get-current,

C-.SUBP..PRIEFIX & "transaction..get..current");
function TPR&NSACTION-GET-CURR1U2T return TRANSACTION Is
begin
return c-transaction-.get..current;
end TRANSACTION-OET..CURAENT;
pragm. INLINE(TRANSACTXON..GET..CURRIPNT);

-- Transaction begin
function c-trannact lon..begin(T: TRANSICTION-TYPE) return TRANSACTION;
pragma I~nTEACECC, c..traneaction..begin);
pr"p INITERACENAME(c-transaction..bogin,

C-SUBP-PREFII k "transact ion..begin");
function TRANSACTION-BEGIN(T..TYPE: TRANSACTIOWTYPE :a UPDATE)
return TRANSACTION is
begin
return c-transaction..begin(T..TYPE);
end TRANSACTION-BEGIN;
pragm. InLINE(TMLNSACTION-BEGIN);

-- Transaction commit
procedure c..transaction~commit(T: TRANSACTION);
pr"p INTERFACE(C, c-.traneaction-.commit);

>1 pragp. INTERPACE-.NAME(c..tranaaction-conmit,
C..SURP-.PREFIX & "transaction..comiimt");

procedure TPARSACTION..COHNIT(TI: TRANSACTION :-TRANSACTION..QET_.CURRENT) is
begin
c-trannaction-comit (TI);
end TRANS ACTION-.COMMIT;
pr"p INLINE CTRANSACTION..CONMIT);

procedure c..trannaction..abort..top-.level;
pragma INTERFACE(C, c-tranaaction-abort..top..level);,
prep.a INIURFACE..NAME(c..transaction..abort..topjeovel,

C-SUBP-PREIX k "transaction..abort-.top-le~rel");
procedure TRkNSACTIO-LABORT..TOP-LEVE is
begin
c-traneaction..abort-.top-level;
end TRANSACTION..ABORT..TOP-LEVEM
pr"p INLINECTRANSACTION-.ABORT..TOP-.LEVE);

procedure c..transaction..abort(T: TRANSACTION);
pr"p INTER2FACE(C, C..trasasction-.abort);
pragu. INTERFACE-.NAME(c-.transaction~abort,

C..SUBPPREFII & "transaction..abort");
procedure TRLNSACTION.,ABORT(TI: TRANSACTION z'TRANSACTION..GET..CURRENT) is
begin

C-10

c-.treansaction2.abort CTZ);
end TRANSACTION-ABORT;
pragma INLINE CTRANSACTION..AEORT);

function c-tranuaction..get..type (T: TRANSACTION) return TRANSACTION-.TYPE;
pragma ZINERACE(C, c..tranaaction..get-type);
pragma INTEEFACE-.NAME(c..traneaction..get-.type,

C..SUBP..PREFIX & "transactiol-get..type");
funct ion TRJIJSACTION-GET-.TYPE(T: TRANSACTION :a TRANSICTION-.GET..CURRENT)

begin
return c..transaction-get-type(TX);

end TRANSACTIONLGET..TYPE;
pragma inLIn(TRWNACTION-GEtT-TPE);

function c..trasnaction-get..uax..r~tries return 09-..NT32;
pragma INTMRPVVC, c-.trt~asaction-get-..ax-retiries);
pragmn INTZ.RPACENAME(c..transaction..get-.mnx..retries,

function TRARSACrION-GET-M.AX-RETRIES rtr SIT2i

begin
return c..tranaection..get..max-.ratries;

and TRAIISACTION..0E7-MAX.RETRIES;
pragma inLINE(TRANSACTION-.GET..KAX-RETRIES);

procedure C-.transaction..set-nax-.retries(C : NATURAL);
pragma, INTERPACMC c-.trmnsaction...aet..max..retriea);
pragma INTEFlACE-.NAME(c-.tranuaction-s.et..maz.retries,

C..SIhP..PJEFIX k "transaction..set-.maz..retries");
r procedure TR ANS ACTION..SETMAX..RZTRIES(COUNT: NATURAL :*10) in

begin
--c.transaction..uet~max~retries(COUNT);

end TRANSACr!ON-SET-..AX-RETRIES;
pragma INLINE(TRANSACTION..SET.J4AX-RETRIES);

function c..trannaction..top..lovol (T: TRANSACTION) return BOOLEAN;
pragma INTERPACE(C, c-.transaction-top-lo1vel);
pragma INT RACEJ±NE(c..tranaaction-.top-.level,

C-.SUBP..PREFIZ k "transaction..top..level");
function TRANsACTION..TOP-.LEVEL(T: TRANSACTION :mTRANSACTION-.GET..CURR~ENT)

return BOOLEAN is
begin

return c-.transaction..top...evol1(TX);
end TRANSACTIOI..TOP..LEVEL;
pragma INLIM (TRLNSACTION..TOP..LEVEM)
-- --------------------
-Utility functions

C-11

A,-

function B_.TO_.OSBCV: BOOLEAR) return OS-.BOOLEAN is
begin
if V then
return 1;
else
return 0;
end if;
end B-.TO..OSB;
prsagma INLINE(B..TO..OSD);

function OSB.T0..B(I: integer) return BOCLEAN is
begin
if I > 0 then
return true;
else
return false;

end if;
end OSD..TO-.B;

/ ~prsagma INLINE COSB-.TCLB);

--DATABASE ROOT FUNCTIONS

--DATABASE ROOT FIND

function c-.database-.root..find(A: ADDRESS; D: DATABASE)
return DATABASE-.ROOT;

7 ~~pragma INTERFACE(C. c..database..root-.find);
pragma INTiERFACE-.NAIIE(c.database-.root-.find,

C..SUBP..PREFII k "database..root..find");
function DATABASE-.ROOT-.FIND(NAME: STRING; DB: DATABASE)
return DATABASE-.ROOT is
begin

return c-.database-.root..find(c..ada..to-.c (NAME(NAME'FIRST) 'ADDRESS,
NAME'LENGTE), DB);

end DATABASE..ROOT-.FIND;
pragma INLINE(DATABASE..ROOT-.FIND);

--DATABASE CREATE ROOT
function c..database-.create-r.oi~t(D: DATABASE; A: ADDRESS)
return DATABASE-.ROOT;
pragma INTERFACE(C, c..databaae..create-.root);
pragma INTERPACE-.ItAME(c-databas...create-.root,

C-SUBP..PREFIX k "database-.crtate..xoot");
function DATABASE-.CREATE-ROOT(DB: DATABASE; NAME: STRINU)
return DATABkSEROOT is
begin
return c-database..create..root (DB,

c-.ada-.to-.c(NAME(NAMI(EFIRST) 'ADDRESS, NAMII'LENGTH));

end DATABISE-.CREATE-.ROOT;

C-12

pragma INLINE(DATABASE..CRATE-.ROOT);

-- DATABASE-RWOT-.GET..NAME

function c-.database..root-.get-.namo(R DATABASE-.ROOT) return SYSTEM.ADDRESS;
pragma INTERFACE(C, c..database-.root..get-.name);
pragima INTERPACE-.NAME(c-database..root-.get...nam,

C-.SUBP..PREFIZ k "database..root-.get..name");

fu~nct ion DATABASE-.ROOT.GET..NAME(ROOT DATABASE-.ROOT) return STRIFG in
ROOT-.ADDRESS :SYSTEM. ADDRESS;
ROOT-NLAME :A..STR2INGS . A.STRING;
NAME : STRING(1. .254) :=(others a>
LE11 : natural:u0;

begin
ROOT-.ADDRESS :c'.dat abase .root..get-nsae (ROOT);

RODOT-.NAME := C..Strings .CONVERT-.C-TO.-A(C-.strings .to-.c(ROOT-.ADDRESS))
LEN :a ROOT..NAME.SIILEIGTH;

/ INANE(.. LEN) :a ROOT..IANE.S(1. .LEN);
return NAME(1.. LEN);

end DATABASE-ROOT..GET-.NANE;

-- create nov os..types
function C..ALLOC..TYPESPEC(A: address; 1: integer) return OS_.TYPESPEC;

pragms INTERPACE(C. c-alloc..typospec);
pragma INTERPACE-.NAJ4E(c-alloc..type spec

C..SUBP..PREFIX & "alloc..typespec");

function ALLOC-.TTPESPEC(NANE: STRING) return OS..TYPESPEC is
begin
return C..ALLOC-.TYPESPEC(c..ada..to..c(NANE(NANE'FIET) 'ADDRESS, NLNEILENGTH) ,O);

end ALLOC-.TYPESPEC;
pragma INLINE(ALLOC..TYPESPEC);

end OSTORE;

C-13

/

;==7______7_7_7777

C.6 Interface Program: ostore.g.a

-- Basic interface to ObjectStore from the Ida programming language
-- Prototype design and implementation by Dave Rosenberg of Object
-- Design, Inc. This file provides suitable generic definitons.

-- Functions are extended and binding is changed to C library interface
-- by Li Chou. Nov, 1992.

with OSTYPES; use OSTYPES;
with OSTORE; use OSTORE;
with SYSTEM; use SYSTEM;
generic

type UTYPE is private;
type UTYPEPTR is access UTYPE;
with function GET-OS.TYPESPEC zeturn OS.TYPESPEC;

package OSTOREGENERICS is

-- Database Roots
function DATABASEROOT.GETVALUE(ROOT: DATABASE-ROOT) return UTYPEPTR;

-- for collections -by Li Chou 92-11-06
function DATABASEROOTGETVALUE(ROOT: DATABASE-ROOT) retura OSCOLLECTION;

procedure DATABASEROOTSET.VALUE(ROOT: DATABASE.ROOT; VALUE: UTYPEPTR);

-- for collecitons -by Li Chou 92-11-06
procedure DATABASEROOTSETVALUE(ROOT: DATABASE-RCOT; VALUE:
OSCOLLECTION);

-- Persistent Allocation
function PERSISTENTNEW(DB: DATABASE) return UTYPEPTR;

end OSTOREGENERICS;

C-14

.1

C.7 Interface Program: ostorg..b.a

--Ad& implementation for generic components of the ObjectStore interface

with OSTORE; use OSTORE;
with SYSTEM; use SfSTEM;
with LANGUAGE; use LANGUAGE;
with OS-TYPES; use OS..TYPES;
with OS.EXCEPTIONS;

package body OSTORE-.GENERICS is

EXCEPTIUiN-.INI : OS-.EXCEPTIONS.OS-.EICEPTION..INDEI;

--DATABASE ROOT GET VALUE
-- for on-.collsction. Li Chou 92-11-06

function c..Aatabase..root..getvalue(R: DATABASE..POOT; T: OS .TYPESPEC)
return OS..COLLECTION;

function c..database-.root..get-.valu. (R: D.ITABASE..RDOT; T: OS..TYPESPEC)
return U..TYPKPTR;
pragma flNrERFLCE(C, c..dotabase-.root..get..value);
pragma. INTERPACE-NAME~c..dtabase..root..get.value,

C-.SUDP.PREFIX & "database..r,.)ot..get.value");
function DATABASE-..fDO1-.GET-.VALUE(ROOT: DATABASE-ROOT)
return U-.TYPEPTR is
begin

return c..database..root..get..value(OOT.GET-OS..TYPESPEC);
end DATABASE-ROOT..GET-.VALUE;) ~ ~pragma INLINE(DATABASE-.ROOT-.GET-.VALUE);

-- for collections -by Li Choun 92-11-06
function DATABASE..ROOT..GET-VALUE(ROOT: DATABASE-.ROOT) return OS-COLLECTION is
begin

return c-database..root-get..value (ROOT,GET..OS.TYPESPEC);
end DATABASE-.ROOT..GET..VALUE;

--DATABASE ROOT SET VALUE
-- for collecitons -by Li Chou 92-11-06
procedure c..database..root-set.vaiue (R: DATABASE-.ROOT; V: OS..COLLECTION;

T: OS..TYPESPEC);

procedure c..datvba9*_.root..set..velue(R: DATABASEROOT; V: UTYPEPTR;
T: CS..TYPESPEC);

pragma INTDPFACE(C, c-.database-.root..set..value);
pragma INTERPACENAME(c-.database..root..set.value,

C-.SUBP-.PIEFIX & "d~atabase..root..set..value');
procedure DATABASE..IOT..SET-.VALUE(RDOT: DATABASE-.ROOT; VALUE: U..TYPEPTR) is
begin
c..database-.root..set-value (ROOT, VALUE, OET...OS.TYPESPEC);
end DATABASE-ROOT-.SET-.VALUE;
pragma MMIN(DATABASE..ROCYT-.SET..VALUE);

0-15

--for collecitons -by Li Chou 92-11-06
procedure DATABASE-.ROOT-.SET-VALUEC(ROOT: DAITABASE..ROOT; VALUE: OS_.COLLECTION) is

begin
c-.database..root-set..yalue (ROOT, VILUE, GE.T..OS..TTPESPEC);
end DIATIASE..ROOT-.SET-,VALUE;

-- Persistent now
function c..pernisteut-.nevCT: OS_.TYPESPEC; N: OSI.NT32; DB: DATABASE)
return U..TYPEPTR;
pragma INTERPACE(CC c-oapruistont-.new);
pragma INTERPACE..NkME(c-.porsistent-.nev,

C-.SUBP-.PREFIX k "objectatore-.alloc");
function PERSISTENT..NEW(DB: DATABASE) return U..TYPEPTR is

* begin
return c..persistent-.nev(GET..OS.TYPESPEC, 1, DB);

* eand PERSISTENT-,NEW;
*pragma INLINECPERS IISTENT-.NEW);

end OSTORE-GENERICS;

C-16

C.8 Interface Program: oa.coll.a

-- Basic collection interlace to ObjectStore from the Ida programming
.- language prototype implementation by Li Chou

with SYSTEM; use SYSTEM;
with OSTORE; use OSTORE;
with OSTYPES; use OSTYPES;

- -generic
type U.TYPE is private;
type U.TYPEPTR is access U-TYPE;
with functior GETOSTYPESPEC return OSTYPESPEC;

package OSCOLLECTION.PKG is

FUNCTION OSCOLLECTIONCHANGEBEHAVIOR(OSCOL OS.-COLLECTION;
aEmY STRING;
VERIFY BOOLEAN :-TRUE)

RETURN OSCOLLECTION;

-- Collection Operations
"-- parameters of oscoll-rep.descriptor and int (retain policy descriptor)

-- are not allowed in this function

-- create collection with behavior
-- 92-11-16
function OSCOLLECTIONCREATE(DB DATABASE;

BUVY STRING;
SIZE OS-INT32 : 0;

RETAIN BOOLEAN:u false
) return OSCOLLECTION;

function OSCOLLECTIONCREAT-(DB : DATABASE;
SIZE : OS-INT32 :* 0

) return OS.COLLE CTION;

procedure OSCOLLECTIONDELETE(OS.COL OS:0COLLECTION);

function OSCOLLECTIONCARDINALITY(OSCOL : OS.COLLECTION) return

OS.UNSIGNEDZNT32;

procedure OSCOLLE0CTION-CLEAR(OS.COL : OS.COLLECTION);

function OSCOLLECTIONCONTAINS(OSCOL : OS.COLLECTION;

VALUE U.:.TYPEPTR) return BOOLEAN;

procedure OSCOLLECTION.COPY(OSCOL.A : OS..COLLECTION;

OSCOL.B : OS.COLLECTMON);

function 0SCOLLECTZON.COUNT(OS.COL : OS.COLLECTION;

C-17

//

-A o .

._ _ __... . . _ _.. . . I.-. _*- . - .- I - • • _ ' . : :.

VALUE U-.TYPEPTR) return OS-UNSIGNED-..NT32;

procedure OS-COLLECTION-.DIFiERECE(OS-.COL-.. os~cfLILECTION;
OS-COL..B 0S-COLLECTION);

function OS-COLLECTiON-EMMT(OS..COL :OS-.CTLLECTION) return BOOLE.AN;

funct ion OS..COLLECTION-.EQUIL(OS-.COL..A :OS-.COLLECTION;
03-.COL-.B :OS...OLLECTION) return BOOLEAN;

function OS..COLLECTION-GET-PEHAVIOR(OS-COL OS-.COLLECTION)
return OS..UNSIGNED-..NT32;

ýfunction OS-.COLLECTION..GREATER..THA(OS-.COL..A :OS...OLLECTION;
OS-.COL-B OS-COLLECTION) return BOOLEAN;

function OS-.COLLECTION-.GREATER..TEAIOR-.EQUAL(
OS-COL-.A OS-COLLECTI ON;
OS-COL-B. OSS.OLLECTION) return BOOLEAN;

oe- u.collections
procedure OS-.COLLECTION-INITIALIZE;

-- the functions of insert
procedure OS..COLLECTION-.INSEPLT(OS-.COL :OS..COLLECTION;

VALUE :U.-TYPEPTR)

procedure OS-.COLLECTION..INSERT..FIRST(OS-.COL OS..COLLECTION;
VALUE rLTYPEPTR)

procedure OS-.COLLECTION-.INSERT..LAST(OS-.COL : S...COLLECTION;
VALUE :U..TTPEPTR)

procedure OS-.COLLECTION-.INTERSECT(OS-.COL..A :0S-COLLECTION;
OS..COL-.B :OS-.COLI.ECTION);

function OS..COLLECTION..LESS-.TLJN(OS-.COL..A :aOSCOLLECTION;
OS..COL-R OS-.COLLECTION) return BOOLEAN;

funictinn OS-COLLECTION-..LSSTHAOR-EQUAL(OS-COL-A OS-.COLI.ECTION;
OS-.COL-..: OSS.CLLECTION)

return Ban.. UAK;

function OS..COLLE A'ON..NOT..EQUAL(OS..COL..A :OS..COLLECTION;
OS..COL-.B :OS..OLLECTION) return BOOLEAN;

-- the functions of remove
function OS-.CflLLECTION...EEOVE(OS..COL :OS-.COLLECTION;

VALUE :U..TYPEPTR) return BOOLEAN;

function OS-.COLLECTION..RENOVE-.FIMS(OS-COL OS..COLLECTION) return U..TYPEPTR;

C-18

function OS-...ULLECrION..RE1MOVE...LST(OS..COL asS-OLLECTION) ref-irn UTYPEPTR;

function OS..COLLECTION-.ONLY(O3..COL OS..COLLECTION) return U.'YPEPTR;

function OS-COLLECrION-ORDERED-EQttAL(OS-COL-A OS-.COLLECTION,
OS..COL..B OS-.COLLECTION)

return BOOLEAN;

-- the functions of pick
function OS-.COLLECTION-.PICK(OS-.COL aS-COLLECTION) return U..TYPEPTR

function OS-.COLLECTION-.QUERY(OS..COL :OS..COLLECTION;
ELEMENT-.TYPE :STRING;
EXPRESS-.STRING :STRING;
DB DATABASE) RETURN OS-.COLLECTION;

function OS..COLLECTION..QUERY-EXISTS(OS-..CL :OS..COLLECTION;
ELEMENT-TYPE :STRING;
EXPRESS-STRING :STRING;
DB DATABASE) RETURN BOOLEAN;

function OS-.COLLECTION..QUERY..PICKCOS-.COL :OS..COLLECTION;
ELEMENT-.TYPE :STRING;
EXPRESS-.STRING :STRING;
DD DATABASE) RETURN U-.TYPEPTR;

proce~dure OS-.COLLECTION-.UNION(OS-COL..A :OS-.COLLECTION;

OS..COL-.B :OS-.COLLECTION);

end OS-COLLECTIONLPKG;

A

0-191

C.9 Interface Program: osacolLb.a

-- Basic collection interface to ObjectStore from the Ada programming
-- language prototype implementation by Li Chou

with UNSIGNED-TYPES; use UNSIGNED.. tPES;
with LANGUAGE; use LANGUAGE;
with OSTORE; use OSTORE;
with OSTYPES; use OSTYPES;
with SYSTEM; use SYSTEM;
-- library provide by VERDIX ADA.
with ASTRINGO;

package body OSCOLLECTION PKG is

SUBTYPE Uppercase-Character IS CHARACTER RANGE 'A' .. Z;
SUBTYPE LowercaseCharacter IS CHARACTER RANGE 'a' . z);

FUNCTION Is-alphabetic (The-Character : IN Character) RETURN BOOLEAN IS

BEGIN
IF The-Character IN UppercaseChr'rrtr THEN

RETURN TRUE;
ELSIF The-Character IN Lowercase-Character TMEE

RETURN TRUE;
ELSE

SETTRN FALSE;
END IF;

END IsAlphabetic;

Collection Operations
"-- parameters of on-coll-rep-descriptor and int (retain policy descriptor)

-- are not allowed in this function

-- create collection with behavior
-- 92-11-16
function ADAOS..BEAVIOR(BEHV : STRING) return OS-UNSIGNEDINT32 is
positioncounter natural :, 1;
behavior-counter natuxal;
o-s.tring-length nat.al :1 0;
os-behavior :s-ursigned-int32 :- 0;
temp.string string(1..30);
tempbehavioer os_.cc1 .ectionbehavior;
begin

os-stringlongth :w tehvllength;

while position-counter <= osastring.length loop
if IsAlphabetic (behv(position-counter)) then

temp-string(1..30) :=(others-> '

behavior-counter := 1;
while POSITION-COUNTER <= OSSTRING.LENGTH and then

BEHV(POSITIONCOUNTER) /- '
loop

C-20

TENP..STRING(BEHAVIOR..COUNTER) : EEV(PCSITION..COUNTER);
POSITION-.COUNTER :uPOSITION-.COUNTER + 1.;
BMLAY!OR-COUNTER : EHAVIOR-.COUIITER + 1;

and loop; -- got behavior
TEMP..BERAVIOR :- OS-COLLECTION-BEHAVIOR'VALUE(TFM-P..SING

if temp-.behavior in ou...collection..behavior then
oa..behavior :- ou..behavior + 12 **

os..collection..behavior'pos(temp..behavior);
end it;

-- get ride of symbol -'P and space
*lSe'

position-.counter :*position-.counter + 1
end if;

end locp;
return os..behavior;

and ADA..OS-.BEHAVIOR;

FUNCTION C. OS-.COLLECTION.C HAN GE-.BEHAVIOR(OS..COL :OS-.COLLECTION;
BEHAVIOR :OS..UNSIGNM-X.NT32;
VERIFY :OS-BOOLEAN) RETURN OS-.COLLECTION;

PRAGMA. !NTERPACE(C, c-.os..collection..change-.behavior);
PRAGNA INTERPACE-.NAME(c-os.collection-.change..bthavior,

C..SUBP..PREFII k "los..collection-.change-.behavior");

FUNCTION OS-.COLLECTION-CHANGE-.BERAVIOR(OS..COL : OS..COLLECTION;
BENY STRING;
VERIFY : OOLEAN :-TRUE) RETURN

as-.COLLECTION is
CO1LL...DV : OS-.UNSIGNED-.INT32 : *O;
BEGIN
it DEHY'length /- 0 then

'COLL-BEVN :a ADA..OS-.BEHAYIOR(BEHY(I. .BEEY'length));
end if;
RETURN C-OS..COLI.ECTION..CNANGE..BEIAVIOR(OS..COL .COLL-BHVB..TO..OSB(VERIFY));

END OS-.COLLECTION-.CHANGE-.BEHAVIOR;
PRAGHA INLINE(OS-.COLLECTION-CRANGE..BEHAVIOR);

function C-.OS..COLLECTION..CREATE(DB :DATABASE;
BEMAVIOR :OS-.UNSIG NED -INT32;
SIZE : 05.11732;
DESCRIPTOR :OS..11T32;
RETAIN :OS-BOOLEAN) return OS..COLLECTION;

pragma INTERFACE(C, c..os..colleection..create);
pragma INTERFICE-.NAME(-..os-.collection-.create,

C-.SDBP..PREII k "as-collection..create"l);

function OS-.COLLECTION..CREATE(DB :DATABASE;

C-21

SIZE OS-I.NT32 :0) return OS-COLLECTION 1s
behavor bitwise operation

- e- ocollection-allow-nulls => 1
-- os-collection..allow-.duplicates => 2
-- os-.collection-signal..duplicates =>) 4
-- os..eollection..maintain-order M> 8
-- os-collection..maintain-cursors => 16
-- this sample default that the behavor is maintain-.order and cursors (24)

COLL-..3V :OS-.UNSIONED-.INT32 *24;

RETAIN : BOaLEkN:= false;
begin

return C-..S-.COLLECTION-.CREATE(DB ,COLL-.BHV,SIZE, 0,B_.TCLOSB (RETAI!N));
end OS..COLLECTION..CREATE;
pragma INLINE(OS-.COLLEMOM-N.CRETE);

-- create collection with behavior
-- 92-11-16

function W-..COLLECTIONLCREATEM(D DATABASE;
BERV STRING;
SIZE OS-I.NT32 :0;

RETAIN BOOLEAN:= false) return
OS-.COLLECTION is

COLL-BEV : S-.UNSIGNED-I.NT32 := 0;
begin

if B M'length /= 0 then
COLL-.BEV : - ADA..OS-..ERAVIOR(BEEV(1.. BUV' length));

end if;
return C-..S-.COLLECTION-CREATE'%DBDCOLL..BNV,SIZE,3,B..T0..SBCRETAIN));

erl OSCOLLECTION-.CREATE;

procedure C-.OS-COLLECTION..DELETE(OS-.COL :OS-.COLLECTION);
pragma INTERFACE(C, c..os.collection-dolete);
pragma INTERPACE-NANE(c-.os..collection-.delete,

C-.SUBP.-PREFIX k "os..collection..delete"f);

procedure 0S-.COLLECTION..DELETLE(OS-.COL :OS-COLLECTION) is
begin

C-.OS-.COLLECTION..DELETE(OS-.COL);
end OS-.COLLECrION-.DELETE;

function c-.os..collection-.cardinality(OS..COL OS-.COLLECTIOX) return
OS...UNSIGNED-I.NT32;

pragma. INTETIPACE(C. c-.os..collection-.cardinality);
prrý:pa INTERFACE-.NAME(c..oa-collection..cardinality,

C..SUBP-.PREFIX k "os-.collection~ cardinality"l);

f'mnction 0S-.COLLECTION-CARDINALITY(OS-.COL : OS-COLLECTION)return
OS-.UNSIGNED-.1NT32 is

C,22

begin
return c..o3..collfction-cardinality(OS-COL);,

end OSSOLLECTION-CARDINALITY;
pragza IXLINECOS..CULLECTION..CJRDINALITY);

procedure C..OS..COLLECTION-.CLEAR(03..COL :OS...OLLECTION);
pragma INTZEtYACE(C, c-os-collection-cleax);
pragpa flTERFACE-NLME(c..oa.collection,.clear,

C..SVEP-PTCEFP A "oo-,collection-.clear');

procedure OS-.COLLECTIGN..CLEIR(%OS..COL OS-COLLECTION) in
be'i~n

C..OS..CoLLECTON..CLEAR(OS-COL);
end OS..COLLECTION-CLEAR;

os-oacollection..contains
function C..OS-CULLWCTION-CONYAINS (OS..COL : 03.COLLECTXON;

VALUE :U..TYPEPTh) return BOOLEAN;

prague INTERPACE(C, c..oa.colloction..contains);
pragma INTEILFACE..NAI4E(c.os.collection..eonteins,

C..SUDP..PRUIX &"ou-cofl ection-conte iza");

function OS..COLLECTION..CONTAINS COS..COL :OS..COLLECTION;
VALUE :U..TYPEPTR return BOOLEAN is

begin
return C..OS-.COLLEC.TIOX-CONTAINS(OS-.COL, VALUE);

and OS..COLLECTION..CONTAINS,
pragma INLINE(OS..COLLECTION-CCJITAINS);,

procedure C..OS-.COLLECTION..CCPY(OS..COL-.A OS..COLLECTION;
OS..COL-B : OS..COLLECT:ON);

pragpa IUTD.FACE(C, c..os.collection-copy);-
pregm INTERPACE..IAME(c..os..collection..copy,

C-IM-P.PRZFIX "oe..colloction~copym);

procedure OS..COLLECTION..COPY(OS..COL-.A OS.CQJ.EflON;
03-.COL-.3 OS-COLLECrzoN) is

begin
C-OLCCLLECTOILCOPY(OS-COL..A ,OS..COL-);

end OS-COLLECTIN-COPY;
pr"p IILINE(OS.COLLECTIOX-COPY);

function C-03-.COLLECTION-.COUNT(OS-.COL OS..COLLECTION;
VALUE U..TYPEPTh) return OS..UNSIGMIED.1T32;

pr"p INTWRACE(C, c-ds..collection..count);
prep INTDPACE..NAK!(c.os..collect ion-.count,

C- SUB P.PTREII & "as..collection.-coiint");
function OS..COLLZCTION..COWT(OS..COL OS..CCLLECIION;

VALUE : U.TYPEPTR) return 0S..UNSIGNM-.INT32 Is

C,23

begin
return c-os..collection-.coiint(OS..COL,VALUE);

end OS..COI.LECTION-COUNT;
pragmA INLINE(O3..COLLECTION..COUNT);

prncodure C-0S-.COLLECTICLDIFFEP.DCE(OS-COL-..: OS-.COLLECTION;
OS..COL-.B :OS_..OLLECTION);

pragna INTE1RFACE(C, c-as-.collection-diffoernce);
pragma INTERFACE-NAME(c-ou..collection-.difference,

j ~C-.SUEP..PRFIX k I"o.ocollection..differencel');

procedure OS..COLLECTION..DIFMI~ENCE(OS-COL..A OS..COLLECTION;
OS_.COL_.B 03.COLLECTION) is

begin
/ ~~ COS-COLLECTION..DIFFERNCE(OS..COL..A,OS-COL-.B);

end aS..COLLECTION-DIFFLRFNcE;
pr..gu INLINE(O3.COLLECTION-.DIFFERENCE);

- m- ocollection-ampty
function C-.OS..COLLECTION-EHPTY(OS-.COL OS..COLLECTION) return BOOLEAN;

pragma INTEIRFACECC, c-oo-collection-empty);
pragma INTERLFACE..NAME~c-.oa-.collection-..mpty,

C-SUBP-PREFIX k "os..collection..eupty");

function O3..COLLECTION-EMPTYCOS-.COL : OS-.CaLLECTION) return BOOLZ.A is
begin

return C..OS-CCLLECTION..EflPM(OS..COL);
end OS-.COLLEWTLON..EMPTY;
preps, INLI1r(OS..COLLECTION..EMPT);

-- oa.col.lection..equal
function C-.OS-COLLECTION..EWJAL(OS.COL..A OS..COLLECTION;

OS-.COLL..D OS-.CDLLEC7ION) return BOOLEAN;

pr"p INTERFACE(C, c-os.col1ection-equa1);
Irrap. INTERFACE-NAKE~c-.oe..co11ection-.equal,

C..SUBP..PAEFIX k "os..collection-sqmal");

function OS..COLLECTION-EQJAL(GS-COL..A OS..COLLECTIOVM;
OS_.COL..D OS..COLLECTION) return BOOLEANI in

begin
return C...O&COLLECTIOL-EQUAL(OS..COL_.A.o3..caL-);

end OS..COLLECTION..EQULL;
prep.a INLINECOS-.COLLECTION..EQUAL);

C-24

-- oa..collection-git-.behavior
function c-.oa..collection-get..behavior(OS-.COL 05.COLLECTION

)return OS..UNSIGMMD..NT32;
pragma INTERFICECC, c-o3coilection-get-.behavior);
pra~gma INTEJRPACE-.NAME(c..os-.collection..get-.behavior,

C..SUBP-PREFIX & "os..collection..get..behavior"');
*-anction OS..COLLECTION-GET..BEEAVIOR(OS-.COL OS-.COLLECTION

)return 0S.-UNSIGNED-I.NT32 is
begin

return c-.o...collection..get..behavior(OS-COL);
end OS-COLLECrION-GEr-BEHAVIaR;
pragma INLINE(OS..COLLECTION..GET..BEEAVIOR);

as- .collection-greater..t2Lan
function C..OS..COLLECTION-.GREATER..TRAR(OS..COL-A OS-.COLLECTION;

OS..COLL..B OS-.COLLECTION) return BOOLEAN;

pragmw INTERPACE(C, c-.os-.collection..greater..than);
* ~~pragma IN7 RFACE-.NA1E(c-.oa..collction-greater-.than,

C..SUBP..PREFIX & "as..collection-gre.ter-.than");

function OS-COLLECrIOILGREATER..THA(0S-.COL-A :OS..COLLECTION;
'10OS-COL-.D :OS.COLLECTION) return BOOLEAN is

begin
return C-..S..COLLECTION-GREATER-.TIA(OS-.COL-.A, OS.COL..D);

end O)S..CDIIECTIONLGREATER_.THAN;
pragma INLINE(OS-.COLLECTION-.GREATU..T RANO

o-- scollection-greater-.than..or..eqtAI
function C-0.S..COLLECTION-.GNETER..TBAJ...R-EQUAL(OS..COL-.. OS..COLLECTION;

0S..COLL-B OSS.OLLECTION) return BOOLEAN,

7/' / ~~pragma INTERFACE(C, c-.oe..collection-greater..than..or..equa.1);
-pragma INTERFACE-NAXE(c-.oa..co11ection-pgeater..tha~n-.or..eq7ia1.

C..STUhP.PREFIX & o..collection-greater..than.or-.equ~alN);

function OS. COLLECTION-.GREATER.TIAN-OR..EQUAL(OS..COL-.. OS..COLLECTION;
08-.COL-B. :OS..COLLECrION) return BOOLEAN is

begin
return C. OS-.COLLECTION..OKETER..TNAJ.O1..EQL(OS..COL.A , OS..COL-B.);

end OS-.COLLECTIO1LQ!&EATER-.THAN-OR..EQUAL;

/ ~preagma INLMN(OS-.COLLECTION-GSEATU...THAJ...EQUAL.);

-- Implemented by Li Chou. 92-11-04
- s- ocollectioni

procedure C..OS..COLLECTIOK..INITIALIZE;
prague INTZRPACE(C, .o-oo-collection..initialize);
pragma INT MACE..NAME(c-.os.collection..initialize,

C-25

C-.SUBP-.PREFIX k "loa.collection-.initialize"');
procedure OS-.COLLECTION-.INITIALIZE is
begin

C-.OS-.COLLECTION..INITIALIZE;

e nd OS-.COLLECTION-.INITIALIZE;
Pragma INLINECOS..COLLECTXON..INITIALIZE);

-- the functions of insert

procedure C-.OS..COLLECTION..INSERT(OS-.COL :0S..COLLECTION;
VALUE :U..TYPEPTR);

pragma INTETIPACE(C, c..on-.collection-.insert);
pragma INTERPACE-.NAME(c..os-collection-.in~ert,

C..SUBP.-PREFIX k "loo-.collection-.insert"l);

procedure 0S-COLLECTION-.INSERT(OS..COL :OS-.COLLECTION;
VALUE :U-.TYPEPTR) is

begin
C-.CS-.COLLECTION-.INSERT(US-.COL ,VALUE);

end OS..COLLECTION-.INSERT;
pragma INLINE(OS-.COLLECTION-INSEUT);

-- OS-.COLLECTION-.INSEfl.T-FIRST
procedure C-OS-.COLLECTION..INSERT-.FIRST(OS-.COL OS-.COLLECTION;

VALUE U-.TYPEPTR);
pragma INTERPACE(C. c..os-collectien-insert-firat);
pragma. INTERACE.NAM'E(c-.os..collection-.insert-.first,

C-SUEP-.PREFII k "os..collection..insert-first");

procedure OS..COLLECTION-INSERT..FIRSTCOS..COL : OS-.COLLECTION;
VALUE : U..TYPEPTR) is

C iS..COLLECTION-.INSERT..FIRST (OS-.COL VALUE);
and OS-.COLLECTIONLINSERT..FIRST;
pragma inINE(OS..COLLZCTION-.INSERT-.FIRST);

o--o.collection..iWaert..last
procedure C-.OS..COLLECION..INSERT-.LAST(OS..COL OS..COLLECTON;

VALUE U..TYPEPTR);
pragma INTDPFACE(C, c-.ou..col1ection-insert-l.ant);
pragma INTRPACE-~NANE(c-.os..collection-insert..1ast,

C..SUBP..PREPIZ k "os-.collection..insert-.last");

procedure OS..COLLECTION-.INSERT..LAST(OS..COL OS..COLLECTION;
VALUE U-.TYPEPTR) is

begin
C..OS-.CCLLECTION..IWSERT-LAST(OS.COL .VALUE);

C-26

end OS-.COLLECTION-.INSERT-.UST;
pragma INLINECOS..COLLECTION-.INSERT-Tj.ST);

procedure C-0S-.COLLECTION-INTERSECT(OS-.COL-.A :OS..COLLECTION;
OS-.COL-B : OSSOCLLECTION);

pragma INTERPACECCI. c-on-collection..intersect);
pragma INTERFACE..NAME(c-.os.c'oilction-intersect,

C-SUSP..PREFIZ & "oa..collection-intersect");

procedure a3-COLLECTION-INTERSECT(CS-COL-A :OS-.COLLECTION;
OS-.COL-..: OS...OLLECTION) in

begin
C-0OS-COLLECTION-INTERSECT(OS..COL-.., OS..COL..B);

and OS-~COLLECTION-.INTERSECT;
pragma INLINECOS..COLLECTION-.INTEflSECT);

as- ocollection-iesa-.than
* ~function C-..S..COLLECTION-LESS-.THAJ(OS-COL-.A 03-COLLEMTONI;

OS..COLL..D OS..COLLECTION) return BOOLEAN;

pragma INTERPACE(CC c-.ou.collection.1ens-.than);
pragma INTERrACE..NAME(c..os..col1ction-l.1ss..than,

C..StJDP.PREFIX k "on-.collection..less-.thmn');

function OS..COLLECTION..LESS..TWh(OS..COL-.A OS..COLLECTION;
OS-.COL-9 OS..COLLECTION) return DOOLEAN is

begin
return C..OS.COLLECTION-.ESS..TRAN(OS-COL-.A, OS..COL..B);

end OS..COLLECTION-LESS..TIAJ;
pragma INLIU(OS..COLLECTION..LESS..TMA);

-- os..coflection..less.than-.or-equal
function COCS-.COLLECTION..LESS-THAJ.OX..EQUAL(OS-.COL..A OS...OLLECTION;

OS-.COLL-B OS..COLLECTION) return BOOLEAN;

prapma I-MMRACE(C, c-.os-ai..olection-leuu..than-.or..eqnal);
pragma INTERPACE..NANE(c-.os-.cf~lection..lexsathan..or.equal,

C-SUUiPREFIX k "os-collectiou-os-.esthan-.or...qua1");

function oS..COLLECTION-.LESS..TEALOR..EQtAL(os-.CoL-A OS..COLLECTION;
OS..COL-D OS..COLLECTON) return BOOLEAN is

begin
return C-.OS-.COLLE rION-.ESS..TEAN.OR-.EQUAL(OS-COL-A OS..COL..B);

end OS-OLLEMTON..LEsS..THAN-OR..EQUAL;
pragma fILnE(OS-.CO)LLECTION-LESS..THDZ...OEQUAL);

C-27

on- ocollection-.not-equal
funct ion C-.OS-.COLLECTION..NOT-.EQUAL(OS-SOL-.A OS..COLLECTION;

OS-COLL-B :OS-COLLECTION) return BOOLEAN;

pragma INTERFACE(C, c..os..collectiou-not-.equa-1);
pragma lIN EFACE-.NAME(c-os..collection..not-.equal.

C..SUBP.YREFII k "o3-.collection..not-oqual");

funct ion OS-.COLLECTION-.NOT..EQUAL(OS-.COL..A OS-.COLLECTION;
OS..COL..B :aS..COLLECTION) return BOOLEAN is

* begin
return C-..S-COLLEC ION..NaT-EQUAL(OS..COL..A ,OS-.COL-..);

end OS-.CCLLECTION..NOT-EQUAL;
pragma INLINE(OS..COLLECTION..NOT..EQUAL);

-- the functions of remove

function C..OS..COLLECTION..REMOVE(OS-.COL OS-.COLLECTION;
VALUE U..TYPEPTR) return BOOLEAN;

pragma INTERPACE(C. c..ou.collection..ramove);
pragma INTERPACE-.NAME(c..o..collection-.remove,

C..UBP..PREFIX k "on-collection..remove");

function OS..COLLECTION-.REMOVE(OS-.COL OS...OLLECTION;
VALUE U..TTPEPTR) return BOOLEAN is

begin
return C..OS.COLLECTION-.REMOVE(OS..COL .VJLUE.);

end OS..COLLECTION-RENOVE;
pragma. INLINE(OS..COLLECTION..REMOVE);

-- OS..COLLECTION-REMOVE-FIRST
function C-.OS-.COLLECTION..REMOVE..FIRST(OS..COL OS..COLLECTION) return U-.TYPE MR

pragma INTEEPACE(C. c..oo-collectioxi-remove..first);
pragma INTERPACE..IAME(c..os-collection..rernove-.first,

C..SUBP..P!EPIX k "os..collection-remove-first");

function OS..COLLEMTON-MDEOVE..FIRST(GS-.COL :OS..COLLECTZON) return U..TYPEPTR Is
begin

return C..OS-.COLI.ECTIONJENOVE-FIRST(CS..COL);
end OS-COLLECTION-REMOVL-FIRST;
pragma MNINE(OS-.COLLECTION-MflOVE-jIRST);

S- oCOLLEcrION-REMOvE-LAST
function C. OS.COLLECTION..REMOVE..LAST(OS..COL OS-.COLLECTON) return U..TYPEPTR;

C-28

pr..gma INTERPACE(C, c.os-collection..rezove..ast);
prapas INTEPPACE.NAME(c-.os-.collction-remuve..1ast,

C..SUBP-.PREFIX & Iloo-.cofllction..remove-.leat");

function OS..COLLECT'ON-REMOVE-LAST(OS-.COL OS..COLLECTION) return U-.TYPEMr is
begin

return C..OS..COLLECTION-IEMOVE-.LAST(OS..COL);
end OS-.COLLECTIONLREKOVE..LAST;
pragma INLINE(OS..COLLECTIOL-tEHOVJE.LAST);

-- OS-.COLLECTION..ONLY
function C-.OS-.COLLECTION-.ONLY(OS-.COL OS..COLLECTION) return U..TTPEPM;

pragma INTERFACE(C, c..oscollection..only);
pragma INTERFACE-NAME(c-.ou..collection..only,

C-.SUBP..PREFIX & "os..collection..only");

function OS..COLLECTION-.ONLY(OS..COL :OS COLLECTION) return U..TYPEPTR is

begirn C-OS-.COLLECTION..ONILY(OS..COL) ; 1
end OS..COLLECTON..ONLY;

-- OS-COLLECTION-ORDMED-EDQUAL
function C-..S..COLLECTIONLORDEP.ED..EQUAL(OS..COL..A :OS..COLLEMTON;

09-COLL-3 : OS-.COLLECTIOIN) return &%OOLEAN;

pragma INTERPACE(C, c-os-collection..ordered-.equal);

pragma. INTEWACE..NANE(c..os-.collection-.ýrderod-equal.

function OS..COLLECTION-ORDEPM-.EQUAL(OS..CL .A :OS.COLLECTION;
as OL-J OS-.COLLECTION) return DOOLEAll is

begin1
return C.-OS.COLLECTION..ORDERED..EQUAL(OS..COL.A , OS.COL..B);

end OS-.COLLECTION..ORDERED..EQUAL;
pragma INLINE(OS..COLLECYION-ORDERED..EQAL);

-- the functions of pick

-- OS-.COLLECTIWN..PICK
function C..OS..COLLECTION-.PICK(OS..COL :OS..COLLECTION) return U..TYPEPTR,

pra"m INTERIACE(C, c-om-.coflection-.pick);
pragma INTERPACE..NANE(c-.ou.collection..pick,

functlin OS-.COLLECTION-PICK(OS-.COL :OS.-COLLECTION) return U-.TYPEPTR in
begin

return C-.OS.-COLLECTIOL-PICK(GS..COL);
end OS..COLLECTION-PICK;

C-29

pragma INLINE(OS-.COLLECTION..PICK);

FUNCTION C-0OS-COLLECTION-.QUER Y(OS-.COL :O05-COLL ECT ION;
ELEMENT :SYSTEM.ADDRESS;
EXPRESSION :SYSTEM. ADDRESS;
DD DATABASE;
FILE-NAME :OS..1NT32;
LINE-.NUMBER: OS-.UNSIGNED..1NT32)

RETURN OS..CGLLECTION;

PRAGMA INTERFACE(C, c...os.collection..query);
PRAGMA INTERPACE..NAME(c..o.collection..quory,

C-.SUBP..PREFIX & "oa..collection..query");

FUNCTION OS..COLLECTION..QUERY(OS..COL OS-.COLLECTION;
ELEMENT-.TYPE STRING;
EXPRESS..STPING STRING;

DB DATABASE) RETURN OS..COLLECTION is

-- THIS SAMPLE DEFAULT-THAT THE FILE NAME AND LINE NUMBER ARE 0
* -- FILE-.NAME :INTEGER := 0;

-- LINE-.NUMBER :OS-.UNSIGN-I1NT32 :a 0;
- ., ELEHENT..ADDRESS SYSTEM .ADDRESS :
* ~~~~A..STRINGS .TO..C(A-.STRINGS .TO-.A(ELEMENT..TYPE(1. .ELEMENT-.TYPE'*LENGTH)));

EZPRESSION-.ADDRESS :SYSTEM. ADDRESS
A..STUINGS .TO..C(A..STRINGS .TO..A(EIPRESS..STRING(l. .EIPRESS..STRING'LENrTH)));

BEGIN

RETUR C-.OS..COLLECTION..QUERY
(OS-.COL,ELMENT..ADDESS,EXPRE-SSION..ADDRESS,DB,0,0);

EDOS..COLLECTION-.QUERY;
PRAGHA INLINE(OS-.COLLECTION-.QUERY);

FUNCTION C..OS..COLLECTION-.QUUY-X.Q.EII(OS..COL : OS..COLLECTION;
ELEMENT :SYSTEM.ADDRESS;
EXPRESSION :SYSTEM.ADDRESS;
DR : DATABASE;
FILE-.NAME : OS..1NT32;
LINL-NUMBLZR: OS..UNSIGNED-INT32)

RETURN BOOLEAN;

PRAGMA INTERPACE(C, C..OS..COLLECTION..QUERY..EXISTS);
PRAGRA INTERFACE-.NAME(C..OS..COLLECTION..QUERY..EXISTS,

C-.SUBP..PRUFIX k 'os..collection..query...xists");

FUNCTION OS..COLLECTION..QUERY.EXISTS (OS.COL OS..COLLECTION;
ELEMENT-.TYPE :STRING;
EXPJIESS..STRING :STRING;
DR : DATABASE) RETURN DOCLEAN IS

C-30

-- THIS SAMPLE DEFA.ULT THAT THE FILE NAME AND LINE NUMBER ARE 0
-- FILE-NAME INTEGER :- 0;
-- LINE..NUMBERt OS-.UNSIGN-I.NT32 :a 0;

ELEMENT..ADDRESS SYSTEM.ADDRESS
A..STRINGS.TO..C(A-.STRINGS.TO..A(ELEHEN..TYPE(1..ELEHENTIiYPE 'LENGTH)).);

EX.PRESSION-ADDflESS : SYS TM. ADDRESS :=

A-.STRINGS.TO-.C(A-.STRINGS.TO-.A(EIPRESS-.STRING(1.. EIPRESS..STRING' LENGTH))).;

BEGIN

RETURN C-.OS-.COLLECTION-QUERY-.EIISTS
(OS..COL ,EEMENT.ADDRESS 8 EXPRESSION-.ADDRESS ,DB, 0,0);

END OS-.COLI.ECTION..QUERY-EXISTS;
PR&GHA INLINECOS-.COLLECTIOlLQUERY-.EXISTS);

FUNCTION C-OS..COLLECTIUN-QUERY-.PICK(OS-COL : OS-.COLLECTION;
ELEMENT : SYSTEM.ADDRESS;
EXPRESSION : SYSTEN.ADDRESS;
DD : DATABASE;
FILE-NAME as OSINT32;
LINE-UUK8ER: OS..UNSIGNED..1NT32)

RETURN U..TYPEPTR;

PEAGMA INTERFACE(C, C-.OS-.COLLECTION-.QUERY..PICK);
PRAGMA INTERPLCE-.NAME(C-.OS..COLLECTION..QUERY-yICIC,

C-.SUBP..PREFIX & "on-.colloction..qpary..pick");

FUNCTION OS..COLLECTION-.QUERY-PICIC(OS..COL OS-COLLECTION;
ELEMENtTTPE : STRING;
EXPRESS..STRING :STRING;
DB :DATABASE) RETURN U..TYPEPTR IS

-- THIS SAMPLE DEFAULT TEAT THE FILE NAME AND LINE NUMBER ARE 0
-- FILE..NAME : INTEGER :a 0;
-- LINE-NUMBER : OS-.UNSIGN-.1NT32 := 0;

ELENENT..ADDRESS SYSTEM.ADDRESS:
A..STRINGS .TO_.C(A..STRINGS.TO..A EIEMEN?..TYPE(1. .ELEMENT.TYPE'LENGTH)));

EXPRESSION-ADDRESS : SYSTEN.ADDIlESS

A-.s'AINGS.T0..C(A-.STRINGS.T0..A(EXPRESSSTRING(l. .EXPRESS-.STRING'LENGTH)));

BEGIN

RETURN C-.OS..COLLECTION-.QUERY-.PICKJ
(OS-.COL,ELEMENT..ADDRESS,EXPRESSION..ADDRESS ,DD,O,0);

END OS..COLLECTION..QUERY.PICK; 1
PACKA INLINE(OS-.COLLECTION-.QUERY-.PICK);

C-31

procedure C-G.S-.COLLECTION-.UNION(OS-.COL-1 : GS_.COLLECTION;
OS-.COL-.B :OS-.COLLECTION);

pragma INTEP.FICE(C, c-.ou..collection-union);--
pr"gm jUT ACE-NiJE(c..oa.collection-..tion,

C..SUBP..PREPIX k "ou..collection..union");

procedure OS..COLLECTION-UINION(OS-.COL-A : 0..COLLECTION;
K- OS0.-COL-.B : OS-.COLLECTION) is

bein
COS-COLLECTIO)N-WIaNCOSCOLA, OS-.CGk.B);

end OS-.COLLECTION-UtNION;
pragmca IrLINE(GS..COLLECTION-INION);

ox- ocursors

function C-.OS-.CURSOR-.CREAtTE(OS-.COLL :OS...OLIECTION; B: 05..DOLEAN)
return OS-.CUT(SOR;

pragma INTERPACE(C c-.on-.curaor-.create);
pragma INTERPACE.NAME(c-.os-.cursor~create 4

C-.SUBP..PREFIX k "os..cursor-.create9);

function OS..CURSOR-.CREATE(OS-.COLL OS-COLLECTION) return OS.-CURSOR is
UPDATED :boolean. :- false;
begin

- - ~return C-..S..CUUSOR..CRtATE(OS..COLL, B-TO.OSB(UPDATED));

pragma INLINE(OS-.CURSOR-CRfEATE);

procedure C-.OS.CURSOR..DELETE(OS-.CUR :OS..CURSOR);
pragina INTERPACE(C, c..os..cursor-.delete);
pragma INTERPACE..NAME(c-.os.cursor-delete,

C-.SUBP..PREFIX k "os..cursor-.delets");
procedure OS..CT3RSOR..DELETE(0S..CUR :OS..CURSOR) is

bgnC..OS.CURSOR-.DELETE(OS-.CUR);

end OS-.CURSOR-.DELETE;
/ ~pragma INLINE(OS-.CURSOR-.DELETE);

function C-C.S..CURiSOILFn=S(OS-CUR OS..CM1WR) return U..TTPEPTR;
pragma INTERPACE(CO c-.os-.cursor-.fixst);
pr"p INTERPACE..NAME(c-os.cursor..firait,

C-.SUDP..PREPII & "os-.cursor..first");
function OS..CURSOR-.FIRST(OS..CUR :OS-.CURSOR) return U_..TYPEPTR is
begin

return C-.OS..CURSOR-.FIflST(OS-.CUR);
end OS-.CURSOR-.FIRST;

- C-32

I;ragma InLINE(as-CU~RSRFIRST);

function C..OS..CURSOR-4ORE(OS..CUR OS-.CUPLSOR) return BOOLEIN;
pr"m INTEttPACE(C. c..oa.cursor-wmre);
pr"p INTERPACE-.NAME,(c-os-.cursor..more,

C..SUBP-.PREFII & "os-.cuzaor..more");
function OS-.CURSOR..NOIE(OS-.CUR : OS-.CURSOR) return boolean i~i
begin

return COS.CURSOR..MORECOS-CUR);
*Ad OS-.CURSOR-(ORE;
pr"gm ININE(OS-.CURSOR-MORE);

function CG.S..cURSOR.IEXT(OS..CUR OS-.CURSOR) ret-arn L-TYPEPT;
prapa INTERTIFCE(C c-oa..curaor..next);
prapma INTERPICE-.NAi4E(c..oe.cursor..nert.

C-SUBP.PREFIX & "om-cuxaor..next");

function OS..CURSOR..NEXT(OS..CUR: CS..CUIISOR) return U..TYPEPTR is
begin

return C-C.S-.CURSOR-NEmT(OS.CUR);
end OS..CURSOR..NEX;
pragma INLINE(aS-.CURSOR-.NEXT);

end OS..COLLECT!ON-.PJCG;

C-33

* C.10 Interface Program: os-cur.a

B a~sic cursor interface to ObjectStore from thq Ada programming
-- language prototype implementation by Li Chou

with OSTORE; use OSTORE;
with OS..TYPES; use 0S.TTPES;

* generic
type ILTYPE in private;
type U-.TYPEPTR is access U..TTPE;

* ~paikage OS..CURSOR..PKG is
-- cursor's functions

function OS..CURSOR..CREATE(OS-.COLL OS..COLLECTION;
UPDATED BOOLEAN := false)return OS_.CURSOR;

procedure OS-CRSOR-.COPY(OS-.CUR-A OS-.CUPSOR;

OS..CUR..D OS...UROR);

procedure OS..CURSOR..DE.LETE(OS-.CUR OS-.CURSOR);

function OS..CURSOR..FIRST(OS..CUU OS-CURSOR) return U-.TYPEP M~

ofprocedure OS..CURSOR-~INSERT..AFTE(OS-.COL :OS-CURSOR;
VALUE :U..TYPEPTR);

procedure OS-.CURSOR-.INSERT...EFORE(OS-.COL :OS..CURSOR;

VALUE :U..TYPEPTR);

function OS-.CURSOR..LAST(OS..CUR :OS..CURSOR) return U..TYPEPTR;

function OS..CURSOR...1REOS..CUR :OS..CURSOR) return BOOLEAN;

function OS-.CURSORJEZT(OS..CUR :OS-CURSOR) return U..TYPEPTR;

function OS..CURSOR..NULL(OS..CUR : OS-.CVRSOR) return boolean;

function OS..CURSOR-.PREVIOUS COS-CUR :OS..CURSOR) return U..TYPEPTR;

procedure OS..CURSOR..RDVEHMAT(OS-.CUR :OS-.CURSOR);

f'unction OS.-CUTISOR-.RETRXEV(OS..CUR :OS..CURSOR) return U..TYPEPTR,

function OS..CURSOR..VALID(OS..CUR OS-.CURSOR) return boolean,

end OS..CURSOR..PKG;

az...j.Z ,..... t,..Z J.r~4 i~1 '. .< .. '., ~l ~ i.. .dL...-

C.11 Interface Prqgram: oa-cur..b.a

-- Basic collection interface to ObjectStore from the Ida programming
-- language prototype implementation by Li Chou

with Lh1JGUAGZ3; use LANGUAGE;
with OSTORE; use aSTOREE;
with OS..TYPES; use OS-.TYPES;

package body OS..CURSOR-.PKG is

ox- ocursors

function C-..S..CURSOR..CREATE(OS..COLL :OS..COLLECTION;
8 OS-BOOLEAN) return OS..CURSOR;

pragma. INTERFACE(C, c..os.cursor..create);
prapma INTMlACE-NAHE(c-os-.cursor-.create,

C-.SUBP..PREFIX & Hos-cursor-creat4");

* - ~function OS-.CURSOR-CREATEOS-COLL :OS-.COLLECTION;
UPDATE: boolean :*false)return OS-.CURSOR is

begin
return C..OS-.CURSOR..CREATE(OS-.COLL, D..TO-.OSB(UPDATED));

and OS-.CUESOR..CREATE;
pragma ININE(aS..CURSOR..CREATE);

procedure, C..OS-.Ct1SOR..COPY(OS..CUR..A OS..CURSOR;
OS-.CUR-B OS..CURSOR);

prapma IUTERPACE(C. c..o..cursor-copy);
pragma INTERPACE-..AME(c-.os-.cursor-.copy.

C-.SUEP..PRUFII & "os..curnor-.copy"t);
procedure os-CRSOR-.COPY(as-CUR-A OS..CURSOR;

----,- OS.CUR..D : OS-.CURSOR) is
begin

C-03-CURSOR...COPY(OS-CrJR-..A OS..CUR-B);
end OS-.CUESOR..COPY;
pragma INLINE(OS-.CURSOR..COPY);

procedure C..OS-.CURSOK..DELETE(OS-.CUR :OS-.CURSOR);
pragma INTERFACE(C. c..os.cursor-delete);
pragma INTE1FACE..1ANE(c-.os-.cursor..delete,

C..SUBP..PWEIX & "os..cursor..delete");
procedure OS.-CURSOR-DELT(OS.CUR OS-.CURSOR) is
begin

CC..S.CUBSOR-DELETE(OS..CUR);
end OS-.CURSOR-.DELETE;

C-35

pragma INLINE(OS..CURSOR-DELZ1E);

function C..OS-CURSOR-FIRST(OS-.CUR :OS-CURSOR) return U-.TYPEPTR;
pragma INTEFi.CE(C, c..oa-cursor..first);
pragma INTERFICEjrAM(c.os-.c1Lrsor-first,

C-.SUBP..PREFIX k "los-cursor-first");
function OS-.CTUhSOR-.FIRST(CS-.CTh :aS-CURSOR) return U-.TYPEPTM is
begin 4

return C. OS-CURSOR..FIEST(OS-.CUR);
end OS-.CURSOR-FIRST;
proj-ma INLINECOS..CTRSOR-.FIRST);

procedure C..OS..CURSOR-.INSERTJ.FTER(OS-.COL 0S-CURSOR;'
VALUE U..TYPEPTR);

pragma IN'IEP.ACE(C, c-.oo-.cursor-insert..after);
pragma INTERFACE-NAKE(c..os-.curzeor-nsert..after,

C..SUBP..PREFIX & "os..cursor..insert-after");

procedure OS.CURhSOR..INSERT..APTER(OS-.COL DS-.CURSOR;
VALUE U-.TYPEPTR) is

begin
C.OS-CURSOR-INSERT-.AFrER(OS-.COL ,VALUE);

end OS-.CURSOR..INSERT-.APTER;
pra~gma INLINE(OS-CURSOR..INSERT-.AFTER);

procedure C-.OS-.CURSOR-.INSERTB.EFORE(OS_.COL OS-.CURSOR;
VALUE U_.TYPEPTR);

pregma INTERPACE(CC c-.ou..cursorjainnert..before);
pr&gma INTEitPACE..NAME(c-os-.cursor..inisert-.before,

C-.SUBP-.PREFIX k "os..cursoz..insert..before");

procedure aS.cURSOR-INSERT-BEFORE(GS-COL : S..CURSOR;
VALUE :U.TTPEPTR) in

begin
C..OS-.CURSOR-INSERT-.BEFORE(OS-COL ,VALUE);

end OS..CURSOR..INSERT-.BEFORE;
pragisa INLINE(OS-.CURSOR-.INSERT-.BEFORE);

function C-0asCURSOR-LAS'r(aS-.CUR : S..CURSOR) return U-.TYPEPTR;
pragma INTERPACE(C, c..oa.cursor-.last);
pragme INTERFACE-.NAME(c-os-.cursor..last,

C-SUBP-PREFUX k "os-curbor-.last');
function OS-.CURSDR-LLST(OS..CUR :OS-CURSOR) return U..TYPEMT is
begin

.return C-.OS..CURSOR-.LAST(OS..CUR);
end OS-.CURSOJR..LAST;
pragma. INLINE(OS..CURSOR..LAST);

C-36

function C..OS-CURSOR..HORECOSSUR :OS-.CUR~SOR) return BOOLEAN;
pra~gma INTEI.PACE(C, c-ou..curnor..nor.);
pragma INTE FACE-NAME(c-os.cursor...moe,

C..StJEP.PRF.FIX & "os..curuor..more");
function OS..CUTISOR-MORE(GS-CUR OS..CURSOR) return boolean is
begin

return C-0S-cIUhSOR-MORECOS-CUR);
end OSSTUhSOR-YORE;
pr"gu INLINE(OS-.CURSOR..MORE);

function C-.OS-.CUILIOR-NEXT(OS..CUR :OS..CURSOR) return U-TYPEPTR;
pr"p INTERFICECC c..on-.curnor-nezt);
pragp. INTETIPACE..NL4E~c..os.curnor-.next,

C..SUBP-.PREFII 1: "oa..cursor.next.);

function OS..CURSOR-IEXT(OS..CTV 03SCURSOR) return U..TTPEPTR is
begin

return C..OS..CURSOR..NET(OS-.CUR);
end OSCURSOR-NEIT;
prague INLINECOS..CURSOR..NKT);

function C..OS..CURSOR..NULL(OS..CUP.: OS..CURSOR) return BOOLEAN;
pra~pa, INTEPFACE(C, c-.oe.cursor-.null);
pr"p INTERtFACE..NANE~c..os-cursor..null,

C-SUIP-PflFIX & "os..cursor-.null").;
function OS.-CURSOR-N.ULL(OS..CUR :OS..CUIISOR) return boolean is
begin

return C..OS-.CURSOR-.N ULL (aS..CUR);
end OSCTVhSOR..NULL;
prapa INLINE(OS..CURSOR..NULL);

function C-OS-CUSOR..PREVIOUS(OS..CTU OS..CUR~SOR) return U..TYPEPTR;
prague XNTERFACE(C. c-o...cursor-previous);
pragp. INTER3ACE-.NAME(c..os-.cirsor..pzevious,

C-SUDP-PREFIZ & "oe..cursor.-provious");
function OS..CURSOR..PUVIOUS(OS..CUR : OS.CURSOR) return U.TYPEPM is
begin

return C..OS..CLISOR-PREVIOUS(OS.CUR);
end OS..CURSOR..PREVIOUS;
pre" INLINE(OS-=UEOR..PRVIOUS);

procedure C..OS.CURSOR.).ENOVE..AT(OS..CtUR OS-CURSOR);
pr"p INTERFACECC, c-aoe.curnor..reuove-at);
prap. IX~flIACE..IANE~c-.oa.cursor~reavoveat,

C..SU3P-PIEFIX & "*a-cursor~reuoowe.t");

C-37

procedure OS. CMDSR-REMOVE.-IT(OS..CUR OS..CURSOR) is
begin

C-SCOS.ThO.R-MOV'r.AT(OS-,CbR);
end OS.USMOR..REOVE-AT;
pr"gm INLINE(OS-CRSýOaR-EMOVýE.AT);

function C.OS..CUPSOR-.RETPIEVE(OS-.CUR :OS..CUUSOR) retwun U..TYPEPTh;
pragma INTEP.TACE(C. c-os-mcuzor.retrieve);
pragna INTRFACE-NAME(c-os-urisor.-retrieve,

C-S EP.PREFIX 4 Ilos.curipor-.retrieve");
function OS-.CUR.SOR..RETRIEVF(OS..CAR :OSSURSOR) return U..TYPEPT is
begin

return C-OS. CURSOR-.EMIEVE(OS-CUR);
end 0S..CURSOR..FEMIEVE~;,
pr"g InLINE(O3..CURZOR..REMhWJ);

function CO -0-ULOR-VALID(OS..CIR :OS-CURSOR) return BOCLEAN;
pragma INTERFACE(C. c-oa.curnor..valid);
pragma INTERFACE..NAKiE(c..oscursor-vuiid,

C-SUBP-PREFIX &t "oo-cursor..valid");
function OSSCRSOR.VALICOSS.UR : OB-CURSOR) return boolemn is
begin

return C. OS.CURSOR-VALID(OS..CUR>;
end OS..UTLSORJ.ALID;
pragma INLINE COS..cURSOR-.VALID);

end OS..CURSOR.PKG;

C-38

/

C.12 Interface Program: except..

-- Erceptions for ObjectStore/Ada interface.
.. Basic interface to ObjectStore from the Ada programming language
-- Prototype design and implementation by Dave Rosenberg of Object
-- Design, Inc.

with SYSTEM; us* SYSTEM;
with LAINUAGE; use LANGUAGE;
with OSTYPES; use OS.TYPES;
package OS.EXCEPTIONS is

LASTEXCEPTION: constant INTEGER :a 0;
subtype OS-EXCEPTION-INDEX is OS-INT32 range 0 .. LASTEICEPTION;
procedure OSADA-EICEPTION(EIR: OSEXCEPTIONINDEI);
pragma EITERNL.NkE(OS.-ADAEICEPTION,

C.SUBP._PRFFIX & "osada-exception");

ERADDORESS.SPACE.FULL: EXCEPTION;

end OSEICEPTIOflS;

C-9

C.13 Interface Program: ezceptb.a

-- Exceptions for ObjectStore/Ada interface.
-- Basic interface to ObjectStore from the Ada programming language
-- Prototype design and implementation by Dave Rosenberg of Object
-- Design. Inc.

package body OSEXCEPTIONS is

procedure OSADI-EXCEPTION(ERR: OSEXCEPTIONIMhEX) is
begin
case ERR is

when 0 => raise ERRADDRESS.SPACE.FULL;
when others => null;

end case;
end OS_ADAEXCEPTION;

end OS.EXCEPTIONS;

C-40

Bibliography

1. Ada Joint Porgram Office, DoD. Ada Reference Manual, ANJI/MIL-STD-1815A, January
1983.

2. Atkinson, bl. P., et al. "An Approach to Persistent Programming," The Computer Journal,
26(4):360-365 (1983).

3. Atkinson, M. P., et al. Data Types and Persistence. Berlin: Springer-Verlag, 1988.

4. AT&T. Unit System V ATST C++ Language System, 1989. selected Code 307-144.

5. Berre, Arne J. and T. Lougenia Anderson. "The HyperModel Benchmark for Evaluating
Object-Oriented Databases." Object-Oriented Databases woith Applications to CASE, Networks,
and VLSI CAD chapter 5, 75-91, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1991.

6. Booch, Grady. Software Engineering with Ada. Benjamin/Cumminp Publishing Company,
Inc., 1986.

7. Booch, Grady. Object Oriented Design with applications. Benjamin/Cummings Publishing
Company, Inc., 1991.

8. Cardelli, Luca and David MacQueen. "Persistence and Type Abstraction." Data 7ypes and
Persistence edited by M. P. Atkinson, et al., Berlin: Springer-Verlag, 1988.

9. Cattel, R.G.G. "Object-Oriented DBMS Performance Measurement." Proceedings of the 2nd
Workshop on OODBS. 364-367. 1988.

10. Harper, Robert. "Modules and Persistence in Standart ML." Data Types and Persistence
edited by M. P. Atkinson, et al., Berlin: Springer-Verlag, 1988.

11. Jacobs, Captain Timothy M. An Object-Oriented Database Implementation of The Magic
VSLI Layout Design System. MS thesis, School of Engineering, Air Force Institute of Tech-
nology, Wright-Pattorson AFB OH, December 1991.

12. Johnson, Eric F. and Kevin Reichard. "The X window Application Programming," Portland:
MIS Pres (1989).

13. Klabunde, Gary Wayne. An Animated Graphical Postprocessor for the Saber Wargame. MS
thesis, AFIT/GCS/ENG/91D-10, School of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB OH, December 1991.

14. Lamb, Charles, et al. "The ObjectStore Database System," Communications of the ACM,
$4 (10):50-64 (1989).

15. Leopold, Vince. "Object-Oriented Programming in Ada, A Viable Method," IEEE, NAECON
89', 2:549-552 (1989).

16. Neville, Donna and Dit Morse. Pro*Ada User's Guide. Oracle Corporation, November 1986.

17. Object Design, Inc., Burlington, Massachusetts. ObjectStore User Guide (1.1 Edition), 1991.

18. Rosenberg, Dave. ObjectStore and Ada. Object Design, Inc., Burlington, Massachusetts,
January 1992.

19. Rumbaugh, James, et al. Object-Oriented Modeling and Design. Prentice Hall, 1991.

20. Scheifler, Robert W. and Gettys Jim. "The X window system," ACM Transaction on Graphics,
5:79-109 (April 1986).

21. Schonberg, Edmond. "Contrasts: Ada 9X and C++," Coss Taik (September 1992).

BIB-1

S•J

22. Thatte, Satish. "Persistent Memory: Merging Al-knowledge and Databases." Readings in
Object Oriented Database Systems edited by Stanley B. Zdonik and David Maier, 242-250,
Morgan Kaufmann Publishers, 1990.

23. Unisys Corporation, 12010 Sunrise Valley Drive. Ada Interfaces to X Window System, March
1989. Contract No. F19628-88-D-')031.

24. Verdix Corporation. Verdix Ada Development System, 1991.

BIB-2

Vita

Lt Col Li Chou (ROCAF, Taiwan) was born on 28 October 1957 in I-Lan, Taiwan, Republic

of China. He graduated from high school in I-Lan in June, 1975. He then entered the National

Defense Medical Center from which he graduated in 1980 with a Bachelor Degree in Pharmacy

and a commission as a Lieutenant in the Republic of China Air Force (ROCAF). His first duty

assignment was at the Fifth Medical Corps, Tau-Yan, Taiwan as a pharmacy officer. In early 1983

he transferred to the 816th Regional Hospital as a pharmacy officer. He received his promotion to

Captain in August, 1983. In the middle of 1984 he relocated to the Surgeon General, Headquarters,

ROCAF, and joined the Medical Administration Staff. While there, he entered Central University

for a training course in Computer Science in August, 1987. He got his promotion to Major during his

training, in January 1988. He entered the School of Engineering, Air Force Institute of Technology

in May, 1991. During his staying here, he received his promotion to Lt Col in January, 1992.

Permanent address: 4F, No. 15-2, Ln 89, Shih-Tong Rd,
Shih-Ling, Taipei, Taiwan, R.O.C.

VITA-1

/

/].REPORT DOCUMENTATION PAGE OMB No. 0704-0188

PubhC repor1mng burden for this oifection of inform ation, est-mated tO average 1 hour Der resporse, including the time for reviewing rnstructlons. serrhing existing data sources,
gathering 35nd ma4 tjmng th data needed, and completing and reviewig the collection of information Send comments rearding this burden estimate or any other aspect of this
collection 0! inormatron. ,ind•u~d g su-1gosttons for ro-ducing this hurdl"n to Wisshngton He-dquar!er$ Services. Directorate for Information O•eratlors and Reports. 1215 Jefferson
DavisHighway. Suite 1204. Arlington. VA 22202-4302. a34 to the Off,:eof Management and Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20503

1. AGENCY USE ONLY (Leave b 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1993 Master's Thesis

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

0 IJECT-ORIENTED DATABASE ACCESS FROM ADA

6. AUTHOR(S)
Li Chou

7. PERFORMING 07GANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATIONREPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 REOT/NUMBEN
AFIT/GCS/ENG/93M-01

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORiNG

Capt Phil Lienert AGENCY REPORT NUMBER

ASD/RWWW Wright-Patterson AFB, OH 45433 x53969
Mr. Joseph V. Giordano
Rome Laboratory RL/C3AB, Griffiss AFB, NY 13441-5700 (DSN) 587-2805

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)
Ada embodies many modem software engineering principles, namely, modifiability, efficiency, reliability, and
understandability. Its powerful data abstraction allows programmers to easily model objects in the real world.
A database management system (DBMS) provides long term storage. It provides a convenient and efficient
environment to manipulate data. CurrentlV; with Ada access to a DBMS is typically done through the use of
a language extension and a preprocessor to convert the extensions to library calls appropriate for the DBMS.
However, these systems are lizaited on more complex applications, such as computer-aided engineering design.
Object-oriented design (OOD) is a new way of thinking about problems using models organized around real-
woild concepts. Object-oriented database management systcrrs (OODBMS), include most benefits of relational
DBMS (RDBMS) and, in addition, provide the capaLility to manipulate complex, heterogeneous data. Ob-
jectStore is an OODBMS. This thesis describes an interface from Ada to ObjectStore which could fulfill the
requirements of complex applications. Our Ada/ObjectStore interface performed better iL CPU time than the
supplied C/ObjectStore interface. However, overall there is not much difference between Ada/ObjectStore and
C/ObjectStore. It is clear that Ada/ObjectStore provides the capability of data persistence to Ada. This
result favorably affects program iength, program development time, program maintainability, and application
reliability.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada, C, Object-oriented database management system, ObjectStore /S9
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prestribed by ANSI Std. Z39-t8
2986-102

/-"/

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Zoumentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow, It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agencv Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. C;te any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, T Distribution

applicable, enter inclusive report dates (e.g. 10 Statements on Technical
Jun873O~u88).Documents.'

Jun87-30Jun88). DOE - See authorities.

Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and comple*e information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Eave blank.
in parentheses. DOE Enter DOE distribution categories

from the Standard Distribution for

Block 5. Funding Numbers. To include contract Unclassified Scientific and Technical
and grant numbers; may include nrogram Reports.
element number(s), project number(s), task NASA - Leave blank.

number(s), and work unit number(s). Use the NTIS - Leave blank.

following labels:

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
"-G Grant TA - Task 20U words) factual summary of the most
"PE - Program WU - Work Unit significant information contained in the report.

.- Element Accession No.

Block 6. Author(s). Name(s) of person(s) Block 14. Subiect Terms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

number of pages.
Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.Ad SBlock 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
,l..... er. Enter the unique alphanumeric report
nm (s) assigned by the organization
per forming the report. Blocks 17. - l. Security ias ; ton.Se!f-

n texplanatory. Enter U.S. Security Classification in

Zlo~k 9. Soonsoring/Monitoring Agency Name(s) accordance with U.S. Security .egulations (i.e.,
and ýAddress(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top andBloc 10. Sponsoring/Monitoring Agency bottom of the page.
Repo Number. (If known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract.)his block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of...; To be abstract. Enter either UL (unlimited) or SAR (same
published in.... When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)
*U S, GMO 1 990-0-273•271

DATC:

lawi

